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The satellite precipitation products (SPPs) obtained from the satellite soil moisture data through a bottom-up
approach (i.e., the SM2RAIN algorithm) have been developed and released in recent years. However, the as-
sessments and the integration of them with the conventional top-down SPPs remain absent over China. This

Keywords: study evaluated and integrated, for the first time, the bottom-up SM2RAIN-ASCAT (SM2RASC) product and the
Satellite precipitation products top-down Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) Early Run product
IMERG over mainland China. The evaluations were conducted at multiple temporal scales using both the continuous and
SM2RAIN-ASCAT

categorical metrics; and the integration was implemented through a nudging scheme. Results indicate that
IMERG outperforms SM2RASC in terms of CC at the daily scale. Meanwhile, it achieves a better performance
than SM2RASC in detecting precipitation events. However, interestingly, IMERG performs worse than SM2RASC
in terms of CC and NRMSE at the monthly scale. Both IMERG and SM2RASC show noticeable seasonal variability
regarding the performance, with better qualities in the wet seasons than in the dry seasons. Spatially, IMERG
performs better in the humid subregions than in the semi-arid subregions in terms of CC, while SM2RASC
performs better in the semi-arid region than in the other subregions. Both of them perform relatively worse in the
complex mountainous subregion (i.e. the Qinghai-Tibetan Plateau) and the arid subregion. The performances of
the SPPs are closely correlated to the elevations and precipitation magnitudes. The correlations and their sig-
nificances, however, vary between IMERG and SM2RASC, and between different time scales and different
evaluation metrics. The integrated product could increase the median CC by up to 25.86% (or 7.23%), and
reduce the median NRMSE by up to 14.72% (or 24.62%), at the daily (or monthly) scale in the validation period
(i.e., 2012-2017), compared to the parent products. This study demonstrated the overall good performance of
SM2RASC over mainland China, particularly in the semi-arid region, and meanwhile, highlighted the strong
benefits of integrating the bottom-up and top-down SPPs.

Performance evaluation
Data integration
Mainland China

1. Introduction 2019), flood and drought monitoring (Hui-Mean et al., 2018; Yuan

et al., 2019; Zhong et al., 2019), and landslide modeling and forecast

Precipitation typically shows strong spatio-temporal variability
(Bardossy and Pegram, 2013), and is one of the major components in
the hydrological cycle and land-atmosphere interactions (Brocca et al.,
2016; Huang et al., 2016). Accurate and reliable information of pre-
cipitation are therefore critical for various fields in geoscience such as
hydrological and ecological modeling (Lima et al., 2018), water re-
source managements (Supit et al., 2012), climate analyses (Chen et al.,

* Corresponding author.
E-mail address: zhanglingky @lzb.ac.cn (L. Zhang).

https://doi.org/10.1016/j.jhydrol.2019.124456

(Brunetti et al., 2018). The rain gauge network is the conventional
method used to measure precipitation at the point scale. Nevertheless,
the density and spatial patterns of the rain gauge networks diverge
significantly across the globe (Kucera et al., 2012), without or with
scarce gauge stations over the remote mountainous and oceanic re-
gions, and the developing countries (Rozante et al., 2018).

The satellite precipitation products (SPPs) evolve rapidly over the
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last few decades, and offer an alternative and promising approach for
obtaining spatially distributed precipitation with relatively high spa-
tiotemporal resolutions (Huffman et al., 2007; Xu et al., 2017). The
primarily advantages of the SPPs over the rain gauge network lie in that
they could estimate precipitation over the ungauged areas, and mean-
while, have higher capabilities in capturing spatial variability of pre-
cipitation at large scales such as the large river basin, continent and
globe. Nevertheless, because of the indirect retrieval of the precipita-
tion, the SPPs are inherently subjected to some drawbacks arising from
the deficiency of the sensors, retrieval algorithms and observing fre-
quency (Ciabatta et al., 2015; Tian et al., 2015; Ebrahimi et al., 2017).
It is therefore necessary and essential to perform an evaluation of the
SPPs before their applications.

Currently, there are a series of SPPs available to the public such as
the Climate Precipitation Center morphing method (CMORPH) (Joyce
et al., 2004), Precipitation Estimation from Remotely Sensed Informa-
tion using Artificial Neural Networks (PERSIANN) (Hsu et al., 1997;
Sorooshian et al., 2000) and Tropical Rainfall Measuring Mission
(TRMM) multi-satellite precipitation analysis (TMPA) products
(Huffman et al., 2007), among which TMPA is perhaps the most widely
used one, and brings considerable science contributions and societal
benefits. Nevertheless, the TMPA product has a planned end date of
December 31, 2019 (https://pmm.nasa.gov/TRMM). Building upon the
success of the TRMM, the Global Precipitation Measurement (GPM)
mission, initiated by NASA and the Japan Aerospace Exploration
Agency (JAXA), provides the next-generation global precipitation esti-
mates at fine spatio-temporal resolutions (0.1°x0.1° and 30-min).
Hence, the Integrated Multi-Satellite Retrievals for GPM (IMERG)
(Huffman et al., 2014), as the successor to TMPA, is now the re-
commended multi-satellite dataset to use for various purposes. Like
TMPA, the precipitation estimates of the newly released IMERG product
are based on the conventional and top-down approach through the
inversion of the atmospheric signals emitted or scattered by hydro-
meteors (Kucera et al., 2012; Brocca et al., 2016). In recent years, the
IMERG product has been extensively evaluated against the ground-
based observations in different regions around the world (e.g. Tang
et al., 2016; Dezfuli et al., 2017; Xu et al., 2017; Chiaravalloti et al.,
2018; Omranian et al., 2018; Palomino—Angel et al., 2019). It is gen-
erally reported that IMERG could reasonably capture the spatio-tem-
poral variability of precipitation, and outperform its predecessor (i.e.,
TMPA).

In addition to the conventional top-down SPPs, the bottom-up ones
such as SM2RAIN-CCI (Ciabatta et al., 2018) and SM2RAIN-ASCAT
(Brocca et al., 2019) have been developed and released to the public in
recent years. The precipitation retrievals in these SPPs are based on the
SM2RAIN algorithm proposed by Brocca et al. (2013), an innovative
and bottom-up approach that uses satellite soil moisture observations to
indirectly estimate rainfall over land. The assumption behind this ap-
proach is very simple, i.e., an increase of soil moisture can be closely
related to rainfall events (Brocca et al., 2016). The bottom-up SPPs have
been evaluated at both regional and global scales. Brocca et al. (2014)
obtained three new global precipitation products from the satellite soil
moisture data including SMOS, ASCAT and AMSR, and found that they
could have better performance than the TRMM-3B42RT product.
Prakash (2019) have conducted the assessment of SM2RAIN-CCI across
India, and concluded that it underestimate precipitation considerably as
compared to the gauge-based observations. Paredes-Trejo et al. (2019)
have evaluated the SM2RAIN-ASCAT, SM2RAIN-CCI and TMPA pro-
ducts over Brazil, and reported that the former performs better than the
latter two products. Rahman et al. (2019b) assessed SM2RAIN-CCI and
SM2RAIN-ASCAT over Pakistan, and found that both of them perform
worse than TMPA across all climate regions. At present, however, the
evaluation of the bottom-up SPPs over China is still absent, which is an
important motivation behind this study.

The top-down and bottom-up SPPs have both pros and cons in
capturing different aspects of the precipitation (Brocca et al., 2016). For
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example, the former one has the limitations in retrieving light rainfall,
while the later suffers from the problems of estimating rainfall when the
soil is close to saturation (Ciabatta et al., 2017). Hence, the integration
of them is highly desirable to increase the accuracy of rainfall estimates.
Ciabatta et al. (2015) merged SM2RIAN-ASCAT and the real-time
(3B42-RT) TMPA product over Italy. Brocca et al. (2016) integrated
SM2RAIN-SMOS and TMPA 3B42RT over Australia. Tarpanelli et al.
(2017) implemented a two-phase integration of three SM2RAIN-derived
rainfall products and the IMERG product in India and Italy.
Chiaravalloti et al. (2018) combined the IMERG product with
SM2RIAN-ASCAT over complex terrain in southern Italy. These studies
reported various degrees of performance improvements for the merged
product. Nevertheless, to our best knowledge, the integration of
bottom-up products with the bottom-up ones has not been implemented
before over China, which is the other important motivation of this
study.

To fill the gaps above, this research is carried out with two para-
mount objectives. One is to evaluate the SM2RAIN-ASCAT and IMERG
products by using the ground-based observations from 701 meteor-
ological stations across mainland China. The other is to integrate the
two SPPs and investigate the potential performance improvements for
the merged product. The evaluations were conducted for IMERG and
SM2RAIN-ASCAT as well as the integrated product at multiple temporal
scales by using both the continuous and categorical metrics. The sea-
sonal and spatial variabilities of the performances of the SPPs, and the
performance dependence on the elevations and precipitation magni-
tudes were further investigated in this study.

2. Study area and data
2.1. Study area

This study was carried out over mainland China, which locates
between about 15°-50°N and 65°-135°E, and covers an area of about 9.6
million km? (Fig. 1). It is characterized by the large variability of ele-
vations, ranging from 152 m below the sea level in east China to
7,528 m above the sea level on the Qinghai-Tibetan Plateau (QTP). As
shown in Fig. 1, mainland China could be subdivided into eight sub-
regions (Chen et al., 2013; Chen and Li, 2016), according to the pre-
cipitation distribution, mountain ranges and elevations. They are the
Xinjiang region (XJ), the Qinghai-Tibetan Plateau (QTP), the middle-
and downstream Yangtze River Basin (YZ), the southwest Yungui Pla-
teau (YGP), Northwest China (NWC), Northeast China (NEC), North
China (NC), and Southeast China (SEC). The arid and semi-arid sub-
regions (i.e., XJ and NEC) are dominated by a temperate continental
climate, with scarce precipitation and intensive evaporation. The
humid subregions YZ, YGP and SEC, on the contrary, are controlled by
tropical and sub-tropical climates with abundant precipitation (Wang
et al., 2019b). The subregions NEC and NC are mainly influenced by the
temperate monsoon climate of medium latitudes with hot and wet
summer, and cold and dry winter. The QTP is characterized by very
complex terrains with an average elevation higher than 4,000 m, and
has a distinct plateau climate features in strong radiation, low tem-
perature and highly variable precipitation patterns (Yu et al., 2015).

2.2. Data

2.2.1. Top-down satellite precipitation product

The level-3 product of GPM (i.e., IMERG) was generated through the
intercalibration, interpolation and integration of “all” satellite micro-
wave precipitation estimates, precipitation gauge analyses, microwave-
calibrated infrared (IR) satellite estimates, and other precipitation es-
timators at fine spatio-temporal scales for the TRMM and GPM eras
(Huffman et al., 2014). Compared to its predecessor TMPA, the main
advantage of IMERG is the extended capability to measure light rain
(< 0.5 mm hr-1) and solid precipitation. The IMERG product currently
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Fig. 1. Topography of China and the locations of the meteorological stations within the eight subregions across mainland China. The sub-regions are the Xinjiang
region (XJ), the Qinghai-Tibetan Plateau (QTP), the middle- and downstream Yangtze River Basin (YZ), the southwest Yungui Plateau (YGP), Northwest China

(NWC), Northeast China (NEC), North China (NC), and Southeast China (SEC).

covers the quasi-global areas ranging 60°N-60°S with a spatial resolu-
tion of 0.1°x0.1°, and will be extended to the fully global domain
(90°N-S) in the future. IMERG has three versions (i.e., Early Run, Late
Run, and Final Run) to facilitate a wide range of users. The Early Run
and Late Run versions are near-real-time with a latency of 4 hand 12 h,
respectively, after the satellite acquisition. The Final Run version, on
the other hand, is post-real-time with a latency of 3.5 months. Different
from the near-real-time product, the post-real-time one has merged
monthly ground-based observations from the Global Precipitation Cli-
matology Center (GPCC) network. The daily accumulated IMERG Early
Run product (version 6, precipitationCal subset) for the period
2007-2017 was used in this study; and it was collected from the Na-
tional Aeronautics and Space Administration at the Goddard Earth
Sciences Data and Information Services Center (GES DISC) (https://
disc.gsfc.nasa.gov/). For simplicity, it would be referred to IMERG
hereafter. More information regarding the IMERG product are available
in Huffman et al. (2019).

2.2.2. Bottom-up satellite precipitation product

There are currently two available bottom-up satellite precipitation
products, i.e., SM2RAIN-CCI and SM2RAIN-ASCAT, which were ob-
tained by applying the SM2RAIN algorithm (Brocca et al., 2013) to the
ASCAT soil moisture observations (Wagner et al., 2012) and the Eur-
opean Space Agency (ESA) Climate Change Initiative combined active
and passive microwave satellite soil moisture product (Dorigo et al.,
2017), respectively. The SM2RAIN algorithm derives the precipitation
from the soil moisture data mainly based on the soil water balance

(Brocca et al., 2013). By assuming negligible runoff and evaporation
during the rainy period, the precipitation (p) could be estimated using
Eq. (1).

+ as(t)™

. hZds(t)
p() = o

@
where n is the soil porosity, Z is the soil layer depth (mm), s is the
relative soil moisture, t is the time (days), a and m are the parameters
used to estimate drainage (deep percolation plus subsurface runoff) rate
(mm/day).

The SM2RAIN-CCI product has applied a static mask to mask out the
periods with high frozen soil and snow probability, rainforest areas, and
the areas with high topographic complexity (Ciabatta et al., 2018),
which leads to a large of missing data over mainland China. Hence, it
was not used in this research. The SM2RAIN-ASCAT product is provided
at the global scale with a high spatial resolution of 12.5 km and a daily
temporal resolution. The newly released version of SM2RAIN-ASCAT
(version 1.1), which are freely available at the website: https://zenodo.
org/record/3405563, was used in this study. It should be noted that the
SM2RAIN-ASCAT data has been resampled to the grids of IMERG
(0.1°x0.1°) through the nearest neighboring algorithm in order to
match the spatial resolutions. The SM2RAIN-ASCAT product is simply
referred to SM2RASC hereafter for conciseness. More information about
SM2RIN-ASCAT can be found in Brocca et al. (2019).

2.2.3. Ground-based observations

In this study, the precipitation observations from 701
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meteorological stations were used to assess the performance of the
SPPs. As depicted in Fig. 1, the stations are very unevenly distributed
across mainland China, with a relatively high density in the subregions
NEC, NC, YZ, YGP and SEC, while a relatively low density in XJ and
NWC, and a lowest density on the QTP. Daily precipitation observations
from the meteorological stations for the period 2007-2017, provided by
the National Meteorological Information Center (NMIC) of the China
Meteorological Administration (CMA), were collected from the China
Meteorological Data Service Center (CMDSC) at the website: http://
data.cma.cn/. The precipitations were measured mainly through the
tipping bucket and weighing rain gauges (Qing et al., 2018), of which
the former be used to measure liquid precipitation (i.e., rain and
drizzle), while the later be used to measure solid precipitation such as
snowfall, mixed rainfall and snowfall, and hail (Wang, 2017). All the
precipitation measurements have undergone strict quality controls
(Shen et al., 2010; Zhao and Yatagai, 2014) including (i) the extreme
values’ check, (ii) the spatio-temporal consistency check, (iii) the in-
ternal consistency check (e.g. duplicated data and incorrect units), and
(iv) the manual inspection and correction. Hence, they are believed to
be robust, and could be used as the ground reference.

The daily precipitation of the IMERG and SM2RAC products are
both the accumulated data from 00:00 to 24:00 UTC. However, the
observations are the accumulated precipitation between 20:00 and
20:00 (Bejing Time, UTC + 8). We, therefore, recalculated the daily
precipitation observations to render them to be temporally consistent
with the SPPs. This is easy to implement since that, besides the accu-
mulated precipitation for the period 20:00-20:00 (Bejing Time,
UTC + 8), the ones for the two sub-periods (i.e., 20:00 to 8:00 and 8:00
to 20:00) are also available for each day. The daily precipitation for the
period 0:00-24:00 UTC could be easily obtained by adding the accu-
mulated data between 8:00 and 20:00 (UTC + 8) in the current day,
and that between 20:00 and 8:00 (UTC + 8) in the next day.

3. Methodology

3.1. Integration of the top-down and bottom-up satellite precipitation
products

In this study, an additional precipitation product was generated by
integrating the top-down and bottom-up satellite precipitation products
(i.e., IMERG and SM2RASC). The integration was implemented through
a simple nudging scheme (Massari et al., 2014; Ciabatta et al., 2015;
Brocca et al., 2016), as in Eq. (2).

Pi (t) = Prviere () + K (Psvorasc (8) — Piverg (£) 2

where Py, (t) is the integrated precipitation, Ppygrg(t) is the IMERG
precipitation estimates, Psyorasc(t) is the SM2RASC precipitation esti-
mates, and K is the parameter that has the same role of the Kalman gain
in the classic data assimilation technique (Massari et al., 2014; Huang
et al., 2016). The parameter K ranges from O to 1; and the greater the
value, the higher the weight given to SM2RASC, and lower weight
given to IMERG. The rationale behind the integration algorithm is very
similar with the multi-model ensemble strategy such as the simple in-
verse-error-square averaging and the advanced Bayesian model aver-
aging, which assign higher weights to the better performing predictions
than the worse performing ones in order to exploit the diversified
capabilities of the predictions of different models (Duan et al., 2007;
Shen et al., 2014; Ma et al., 2018; Mastrantonas et al., 2019). The K
values were determined through a calibration process with the goal of
minimizing the root mean square error (RMSE) between the observa-
tions and the integrated results. The calibration was carried out for each
meteorological station during the period 2007-2011 at the daily scale
by using the fmincon function in MATLAB. After calibration, the
parameter K was used to estimate precipitation for the validation period
2012-2017. The integrated product would be referred to IMERG&SM2R
hereafter.
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3.2. Evaluation of IMERG, SM2RASC and IMERG&SMZ2R

The evaluations of IMERG, SM2RASC and IMERG&SM2R were
conducted using the grid-to-point technique (i.e., the nearest neighbor
method). More specifically, we first find out the grid of the SPPs that
contains the meteorological station, and then extract the grid pre-
cipitation values, and compared them with the corresponding ob-
servations. The SPPs were quantitatively assessed through three con-
tinuous statistical measures: (i) correlation coefficient (CC); (ii) relative
bias (Rbias); (iii) normalized root mean square error (NRMSE), which
are defined as in Egs.3, 4, and 5 respectively. A higher CC and a lower
NRMSE together with a lower absolute Rbias signify better agreements
between the precipitation estimates and the observations, and vice
versa. Considering that the integrated product may inflate the perfor-
mance over the calibration period, we assessed the IMERG, SM2RASC
and IMERG&SM2R products for the calibration period (2007-2011) and
validation period (2012-2017), respectively.

Z?:l (PiObS - Pr(r)llzzsan)(ﬂ - Pmean)

CC = = = = =
\/Zizl (Pio ' - Pr?lcfm)z \/Eizl (Pl - Pmean)2 (3)
DGR )
Rbias = W X 100%
i=1"1 (4)
NRMSE » Zicy (B PV

1 b
o 2 P )

where P, and PP are precipitation estimates of the SPPs and the ob-
servations, respectively, at the time step i; Byq, and P2, are the mean
values of precipitation estimates and the observations, respectively; and
n is the total number of time steps. Moreover, three categorical metrics
including the probability of detection (POD), false alarm ratio (FAR)
and critical success index (CSI), defined as in Egs. (6)—(8), respectively,
were employed to assess the capability of the SPPs in detecting pre-

cipitation events.

POD = a/(a + b) 6)
FAR = c¢/(a + ¢) 7
CSI=a/(a+b+c) ®

where a is the number of precipitation events correctly detected; b is the
number of the missed events; and c is the number of non-events that are
incorrectly detected. Hence, the POD refers to the fraction of the cor-
rectly detected precipitation events; the FAR refers to the fraction of the
predicted events that are erroneously detected; and the CSI is an in-
tegrated measure of the overall performance. The values of POD, FAR
and CSI range from 0 to 1. Higher POD and CSI together with a lower
FAR signify better performance. The categorical metrics were computed
at each meteorological station for different precipitation thresholds,
i.e., 1, 5, 10 and 15 mm/day.

Besides the performance metrics at the daily and monthly scales,
those in different seasons, i.e., spring (March-May), summer (June-
August), autumn (September-November), and winter (December-
February), were also calculated in order to analyze the seasonal var-
iations of the performance of the three SPPs. Furthermore, we depicted
the performance metrics at each meteorological station over mainland
China to further investigate the spatial variability of the performance.
In addition, we further explored the performance dependence of the
SPPs on the topography and precipitation magnitudes by conducting
the correlation analyses between the performance metrics and the
elevations (or the annual average precipitation).
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Fig. 2. Spatial variability of the parameter K of the integration algorithm.
4. Results systematic error and a lower random error in IMERG, in comparison to

4.1. Calibration of the integration algorithm

The spatial variability of the calibrated parameter K of the in-
tegration algorithm (Eq.2) is shown in Fig. 2. It is seen that the para-
meter K is greater than 0.5 at most of the stations within the subregions
XJ and NWC, indicating that, overall, higher weights have been given to
the SM2RASC product in the process of integration. However, they
mainly range 0.3 to 0.6 within the subregions YZ, SEC and YGP, im-
plying that, overall, higher weights have been given to IMERG. In the
remaining subregions (i.e., QTP, NEC and NC), the parameter K varies
greatly, and shows obviously stronger spatial variability than the other
subregions. The median value of the parameter K is 0.51, suggesting
that the integrated product originates almost equally from SM2RASC
and IMERG over mainland China.

4.2. Performance assessment over mainland China

4.2.1. Continuous performance metrics

Fig. 3 presents the box plots of the continuous performance metrics
for IMERG, SM2RASC and IMERG&SM2R at the daily scale during the
calibration and validation periods, respectively. The median CC is 0.65
(or 0.67) for IMERG, while it is 0.56 (or 0.58) for SM2RASC during the
calibration (or validation) period. Hence, SM2RASC performs worse
than IMERG at the daily scale, in terms of CC. However, the median
NRMSE is almost the same for IMERG and SM2RASC in both the cali-
bration and validation periods. This suggests that there is a larger

SM2RASC. The results at the monthly scales are plotted in Fig. 4. The
median CC are 0.83 and 0.87, respectively, for IMERG and SM2RASC
during the calibration period, and they are 0.83 and 0.85, respectively,
during validation period. The median NRMSE values are 0.67 (or 0.65)
and 0.59 (or 0.58), respectively, for IMERG and SM2RASC, during the
calibration (or validation) period. Hence, unlike the results at the daily
scale, SM2RASC performs better than IMERG at the monthly scale. In
terms of Rbias, the median values are 8.65% and 11.18%, respectively,
for IMERG during the two sub-periods, indicating an overestimation of
precipitation. However, the Rbias is tiny (0.36%) for SM2RASC during
the calibration period, while it is —3.40% during the validation period.
Regarding the integrated product IMERG&SM2R, it could increase the
median CC by 9.23% (or 8.43%) and 26.79% (or 3.45%), respectively,
compared to IMERG and SM2RASC, respectively, for the daily (or
monthly) precipitation in the calibration period. Meanwhile, it could
reduce the NRMSE by 16.90% (or 16.61%) and 26.87% (or 16.95%),
respectively. Very similar results can be observed for the validation
period. These results indicate that IMERG&SM2R has an obviously
improved performance, in comparison to its parent products (i.e.,
IMERG and SM2RASC).

4.2.2. Categorical performance metrics

Fig. 5 shows the box plots of the categorical metrics POD, FAR and
CSI for the SPPs with the precipitation thresholds of 1, 5, 10 and
15 mm/day, respectively. In the calibration period, the median POD is
0.73 for IMERG with the precipitation threshold of 1 mm/day, lower
than that for SM2RASC (0.82). However, the median FAR is 0.56 for
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SM2RASC, obviously higher than that for IMERG (0.41). This leads to a
higher value of the CSI for IMERG than SM2RASC, which are 0.47 and
0.39, respectively, in line with the results when the precipitation
threshold increases to 5 mm/day. The median POD, FAR and CSI are
0.56 (or 0.51) , 0.45 (or 0.49) and 0.48 (or 0.34), respectively, for
IMERG, and are 0.43 (or 0.27), 0.49 (or 0.47) and 0.30 (or 0.21), re-
spectively, for SM2RASC when the threshold is set as 10 mm/day (or

15 mm/day) in the calibration period. Hence, SM2RASC performs
better (or worse) than IMERG in terms of POD (or FAR) when the
precipitation threshold is < 10 mm/day, while vice versa is the case
when the threshold is 10 or 15 mm/day. The very similar results can be
found for the validation period. Nevertheless, IMERG outperforms
SM2RASC for all the precipitation thresholds in terms of CSI. Regarding
the integrated product IMERG&SMZ2R, the median POD is consistently
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higher than its parent SPPs when the threshold is < 10 mm/day, while
the median FAR is consistently lower than its parent products when the
threshold is higher than 5 mm/day. Overall, the IMERG&SM2R product
outperforms its parent SPPs in detecting precipitation events when
threshold is higher than 1 mm/day, as indicated by the higher CSI
values. The median CSI could be increased by IMERG&SM2R with the
magnitudes of 3.78-11.69% and 26.75-68.66%, respectively, com-
pared to SM2RASC and IMERG, respectively, in the calibration period.
As shown in Fig. 5, the categorical metrics for IMERG, SM2RASC and

IMERG&SMZ2R in the validation period are very closed to the calibra-
tion period.

4.3. Seasonal variability of the performance

As shown in Fig. 6, the IMERG, SM2RASC and IMERG&SM2R pro-
ducts show similar seasonal variability regarding the performance at
the daily scale. In terms of CC, it has higher values in summer and
autumn than in winter. The median NRMSE, on the contrary, is the
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Fig. 6. Seasonal variations of the performance metrics for IMERG, SM2RASC and IMERG&SMZ2R at the daily scale.

largest in winter, and is the lowest in summer. The median CC for
IMERG is higher than SM2RASC in all seasons. The median NRMSE for
SM2RASC is consistently lower than IMERG in spring, autumn and
winter, while the contrary is the case in summer. The Rbias shows re-
latively small seasonal variations. Nevertheless, it has obviously larger
ranges in winter, with a lower median value compared to the other
seasons. In terms of CSI, it has the highest median value in summer,
followed by autumn, spring and winter. The IMERG product has a
better ability in detecting precipitation events than SM2RASC in all
seasons, as indicated by the higher CSI values. The seasonal variations
of the performance metrics for the three SPPs at the monthly scale, not
shown here, are in consistent to those at the daily scale, with the dif-
ference that SM2RASC performs better than IMERG in all season while
the contrary is the case at the daily scale. The integrated product
IMERG&SM2R performs the best among the three SPPs in all seasons at
both the daily and monthly scales, as indicated by the higher CC and
CSI values and lower NRMSE relative to the parent SPPs (i.e., IMERG
and SM2RASCQ).

4.4. Spatial variability of the performance over mainland China

Fig. 7 plots the spatial patterns of the performance metrics for
IMERG, SM2RASC and IMERG&SM2R at the daily scale. In terms of CC,
it shows relatively high values for IMERG in the humid subregions SEC,
YGP and YZ, followed by NC, NEC and NWC. The arid subregions XJ
have the lowest CC on average, compared to the other subregions.
Overall, the CC decreases from the humid southeast China to the arid
and semi-arid regions of northwest China for the IMERG product. Re-
garding the SM2RASC product, however, the CC have higher values in
the semi-arid subregion NWC, in comparison to the other subregions.
The lowest CC can be similarly observed in the arid subregion XJ. In
terms of NRMSE, it decreases obviously from northwest to southeast
China for both IMERG and SM2RASC. The subregions XJ and NWC have
higher NRMSE values while the subregions SCE, YZ and YGP have re-
latively lower NRMSE values. The Rbias is positive for the IMERG
product within most of the subregions of mainland China except for
QTP, over which the Rbias is negative, and with higher magnitudes

(< -20%). With respect to SM2RASC, the Rbias is negative at most of
the stations within the subregions NEC, YZ and NC. The Rbias has large
variability for SM2RASC over the remaining subregions, within which
both positive and negative values are widely distributed. The CSI values
were calculated for the three SPPs with the precipitation threshold of
1 mm/day. They are relatively high (greater than0.50) in YZ and SEY,
but low (< 0.30) in XJ for the IMERG product. For the SM2RASC
product, the CSI shows high values in YZ, SEC and QTP, and similarly,
has the lowest values in XJ. As depicted in Fig. 7, the spatial patterns of
CC, Rbias and CSI for the integrated product IMERG&SM2R agree well
with IMERG. The NRMSE for IMERG&SM2R is obviously lower than
those for IMERG and SM2RASC in the subregions YZ and SEC, in-
dicating a substantial improvement of the performance. Comparing the
results for the three SPPs, we can conclude that the integrated product
performs better than IMERG and SM2RASC at most of the stations over
mainland China, as indicated by the higher CC and lower NRMSE va-
lues, together with the lower absolute Rbias values. Meanwhile, IMERG
overall outperforms SM2RASC in the humid subregions (i.e., NEC, YZ
and YGP), while it performs worse than SM2RASC in the semi-arid
region (i.e., NWQC).

Fig. 8 depicts the spatial distributions of the CC and NRMSE for the
three SPPs at the monthly scale. The CC shows high values (greater
than0.70) for the IMERG and SM2RASC products across mainland
China except for the subregion XJ. The higher CC at the monthly scale
than the daily one can be explained by the fact both IMERG and
SM2RASC have been subjected to a static monthly climatological cor-
rection (Brocca et al., 2019; Huffman et al., 2019); and meanwhile, the
variability of the monthly precipitation is considerably lower than the
daily one. In terms of NRMSE, in line with the results at the daily scale,
it decreases form southeast to northwest China for both IMERG and
SM2RASC. The CC and NRMSE maps of IMERG&SM2R are different
from those of IMERG and SM2RASC, with obviously more stations have
higher CC and lower NRMSE values. Overall, the performance metrics
for the three SPPs have strong spatial variability at both daily and
monthly scales. However, the spatial patterns diverge significantly be-
tween the three SPPs. On average, IMERG and IMERG&SMZ2R perform
better in the humid subregions (i.e., YZ, SEC and YGP) than in the arid
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and semi-arid subregions (i.e., NWC and XJ) and the QTP. However,
SM2RASC perform better in semi-arid subregion NWC than the re-
maining subregions.

4.5. Performance dependence on the elevations and precipitation
magnitudes

Fig. 9 shows the correlations of the performance metrics with the
elevations for IMERG, SM2RASC and IMERG&SM2R, respectively, at
the daily scale. The CC consistently shows a significant negative

correlation with the elevations for the three SPPs. In terms of NRMSE,
however, it presents an insignificant correlation with the elevations for
all the three SSPs. The Rbias and CSI decrease significantly with the
increasing elevations for IMERG. However, the Rbias increases sig-
nificantly, and the CSI decrease insignificantly for SM2RASC. The cor-
relations of Rbias and CSI with the elevations are not significant for the
integrated product. The results at the monthly scale are shown in
Table 1. Different from those at the daily scale, the CC shows a positive
correlation with the elevations for the three SPPs, and meanwhile, the
NRMSE correlates significantly with the elevations for the SPPs. Fig. 10
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Fig. 8. Spatial patterns of the performance metrics (CC and NRMSE) for IMERG, SM2RASC and IMERG&SM2R at the monthly scale.

plots the relationships between the performance metrics and the annual
precipitation magnitudes at the daily scale. The CC shows a significant
positive correlation with the elevations for IMERG and IMERG&SM2R,
while it has an insignificant one for SM2RASC. The NRMSE and Rbias
present significant downward trends, while the CSI exhibits a sig-
nificant upward trend with increasing precipitation magnitudes for all
the three SPPs. The absolute Rbias tends to decrease with increasing
precipitation magnitudes for IMERG and IMERG&SM2R, while it tends
to increase for SM2RASC. At the monthly scale, the CC correlates po-
sitively with the precipitation magnitudes for IMERG and IMERG&
SM2R, whereas it shows an insignificant correlation for SM2RASC. In
terms of NRMSE, it consistently correlates negatively with precipitation
magnitudes for the three SPPs at the daily and monthly scales. Overall,
these results demonstrate that the performance of the three SPPs de-
pends greatly on the elevations and precipitation magnitudes.

5. Discussion
5.1. Comparisons of the performances of IMERG and SM2RASC

In this study, we assessed the bottom-up SM2RASC product and the
top-down IMERG product over mainland China in a timely manner. The
IMERG product has a better performance than SM2RASC in terms of CC
at the daily scale, which is different from a similar study conducted over
the southern Italy (Chiaravalloti et al., 2018) which reported an almost
comparable performance of the two SPPs. In contrast, IMERG performs
worse than SM2RASC at the monthly scale. The inconsistent perfor-
mance at the daily and monthly scales is possibly due to the better
capabilities of SM2RASC in retrieving accumulated rainfall, and
meanwhile, the stable product accuracy of SM2RASC over time (Brocca
et al., 2019). Meanwhile, the monthly climatological corrections based
on different benchmarks might also contribute to explain the incon-
sistency. The IMERG product was calibrated against the Global Pre-
cipitation Climatology Project (GPCP) data (Huffman et al., 2019),
while SMRASC was corrected based on the ERA5 reanalysis data
(Brocca et al., 2019). It should be mentioned that the climatological
correction is static (or constant) for each month, which is different from
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the dynamic month-by-month correction implemented for the post-real-
time IMERG product. In terms of the capacity in detecting precipitation
events, the results indicate that IMERG achieved a better performance
than SM2RASC, which disagrees with the study of Chiaravalloti et al.
(2018). We also found that the POD and CSI values drop with the in-
creasing precipitation thresholds for both SPPs, indicating a deteriorate
performance for detecting more intense precipitation events, as re-
ported in some other studies (e.g. Li et al., 2018; Rozante et al., 2018).

Both IMERG and SM2RASC show obvious seasonal variability of the
performance. They tend to have better performance in the wet seasons
(summer and autumn) than the dry seasons (winter and spring), as
reported in the previous studies (e.g. Wei et al., 2018; Paredes-Trejo
et al., 2019; Wang et al., 2019a). In winter, SM2RASC tend to under-
estimate precipitation significantly, as indicated by the high negative
median Rbias (-32.15%). The underestimation by SM2RASC is possibly
due to the deficiency of the SM2RAIN algorithm (Brocca et al., 2013)
which retrieve precipitation mainly depends on the soil moisture var-
iations. In winter, the rainfall on the frozen soil might not be able to
induce detectable soil moisture variation for the sensor (i.e., ASCAT) on
board the satellite, resulting in the misses of some precipitation events.
Moreover, the SM2RAIN algorithm could not estimate snowfall (Brocca
et al., 2019), which can also explain the underestimations of pre-
cipitation in winter.

The IMERG and SM2RASC products also exhibit strong spatial
variability of the performance. The IMERG product tends to have an
obviously better performance in southeast China (i.e., SEC, YZ and
YGP), characterized by a humid climate, than in northwest China (i.e.,
XJ and NWC) that is controlled by arid and semi-arid climates. In
contrast, the SM2RASC product performs better in the semi-arid region
(i.e., NWC) than in the humid subregions. This might be explained by
the fact that the SM2RAIN algorithm can hardly estimate precipitation
when the soil is close to saturation since the soil moisture would be
constant in this case (Brocca et al., 2014). Compared to the semi-arid
region, the soil over humid subregions (i.e., SEC, YGP and YZ) are more
likely to experience saturation due to the more frequent precipitation
events with higher magnitudes and durations. The lower performance
for the SM2RAIN-derived products in the wetter regions has also been
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Fig. 9. Correlations of the performance metrics with the elevations for IMERG, SM2RASC and IMERG&SM2R at the daily scale. The significance of the correlations

(i.e., the P values) are also presented in the figure.

reported in the previous studies (Paredes-Trejo et al., 2019; Rahman
et al., 2019a). The SM2RASC product performs worse in the arid region
(i.e. XJ) relative to the other subregions, in line with Paredes-Trejo
et al. (2018). This might be due to the deficiency of the ASCAT product
in estimating soil moisture under the dry climatic conditions. The
strong spatial variability of the performance of IMERG and SM2RASC
indicates that whether the former outperforms the later or not depends
heavily on the regions to be studied, which highlights the necessity of
conducting a preliminary evaluation of the SSPs before their applica-
tions.

The further analyses revealed that the performances of IMERG and
SM2RASC are closely correlated to the elevations and precipitation
magnitudes, agreeing with the studies of Bharti and Singh (2015) and
Xu et al. (2017). The correlations, however, can vary significantly

Table 1

between IMERG and SM2RASC, different time scales and different
evaluation metrics. The performances for IMERG and SM2RASC tend to
decrease from the high-altitude regions to the low-altitude regions in
terms of CC and CSI at the daily scale. This is reasonable considering
that both IMERG and SM2RASC have not taken the topographical fac-
tors into account, and meanwhile, could not deal well with the frozen
and snow surfaces. With the increasing precipitation magnitudes, the
IMERG product exhibits significantly better performances in terms of
CC, NRMSE and CSI. The SM2RASC product, however, shows an in-
significant dependence on the precipitation magnitudes in terms of CC.
Meanwhile, it has a significant deteriorate performance in terms of
Rbias, but a significant improved performance in terms of NRMSE and
CSI with the increasing precipitation magnitudes.

Correlations of the performance metrics with the elevations and precipitation magnitudes for IMERG, SM2RASC and IMERG&SM2R at the monthly scale.

Products Performance metrics vs Elevation/precipitation

CC vs Elevation CC vs Precipitation NRMSE vs Elevation NRMSE vs Precipitation
IMERG + (P = 0.32) +(P < 0.05) + (P < 0.05) -(P < 0.05)
SM2RASC + (P < 0.05) -(P =0.28) + (P < 0.05) -(P < 0.05)
IMERG&SM2R + (P < 0.05) +(P < 0.05) + (P < 0.05) - (P < 0.05)

Note: the signs ‘+’ and ‘-’ means positive and negative correlations, respectively; P is the significance of the correlations.
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5.2. Performance improvements for the integrated product

We merged the IMERG and SM2RASC products through a nudging
scheme. In the calibration (or validation) period, the integrated product
(i.e., IMERG&SM2R) could increase the median CC by up to 26.79% (or
25.86%) and 8.43% (or 7.23%), respectively, at the daily and monthly
scales, compared to the parent products. Meanwhile, the median
NRMSE could be reduced by up to 16.95% (or 14.72%) and 26.87% (or
24.62%), respectively, at the daily and monthly scales. Additionally,
the median CSI could be increased by up to 68.66% (or 70.07%) when
the precipitation threshold is greater than 1 mm/day in the calibration
(or validation) period. These results imply the strong benefits of in-
tegrating the bottom-up and top-down SPPs, and confirmed the findings
of the previous studies (e.g. Ciabatta et al., 2015; Brocca et al., 2016;
Ciabatta et al., 2017; Chiaravalloti et al., 2018). This is reasonable
considering that the deficiencies of one SPP could be compensated by
the other one (Ciabatta et al., 2017). For instance, the deficiency of the
bottom-up product SM2RASC in capturing precipitation under wet
conditions can be overcame by IMERG, as proved in this study.

The integration of IMERG and SM2RASC was implemented for the
daily precipitation. The integrated product also shows an improved
performance at the monthly scale, compared to the parent products.
This is reasonable considering that the spatial patterns of the perfor-
mance of IMERG and SM2RASC at the daily scale agree well with those
at the monthly scale. However, it should be mentioned that the
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condition may change if the post-real-time IMERG product is used.
Since the post-real-time product has merged monthly ground-based
observations, the spatial patterns of its performance might diverge
obviously between the daily and monthly scales, depending on the
number of gauge stations included in the GPCC network. In this case,
the integration at the daily scale may not necessarily bring an im-
provement of the performance at the monthly scale.

The parameter of the integration algorithm shows strong spatial
variability, and therefore, needs to be calibrated with the ground-based
observations. Hence, the adopted integration algorithm can hardly be
used to merge the SPPs over the ungauged regions. One possible way to
address this problem is to interpolate the parameters over the spatial
domain, which, however, might bring about additional biases, parti-
cularly in the mountainous areas with complex terrains. Moreover, the
median value of the integration parameter K is about 0.5 in this study.
This indicates the merging of IMERG and SM2RASC can be im-
plemented through the simple arithmetic average of the two products
over mainland China, as did by Chiaravalloti et al. (2018). This simple
approach, therefore, could be another way to implement the integration
of the SPPs over the ungauged regions. This efficacy of this approach,
however, depends greatly on the regions to be studied, as well as the
SPPs to be integrated.
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5.3. Uncertainties

The spatial mismatch between the satellite precipitation estimates
and the ground-based observation is one of the intractable issues for the
evaluations of the SPPs. In this study, we adopted a grid-to-point ap-
proach, i.e., the nearest neighbor method, to evaluate the performance
of IMERG and SM2RASC at each meteorological station with the as-
sumption that the point-scale precipitation measurements are equal to
the grid averages, as did in many other studies (e.g. Li et al., 2013;
Ebrahimi et al., 2017; Hu et al., 2018; Yuan et al., 2018; Jiang and
Bauer-Gottwein, 2019). The assumption behind the nearest neighbor
method is reasonable in the flat areas with relative uniform precipita-
tion patterns, whereas it might not hold true in the mountainous areas
with complex topography and nonhomogeneous precipitation patterns.
For instance, if one gauge locates in the valley of a mountainous grid of
the SPPs, which is in accordance with the realities in most cases due to
challenges of establishing and maintaining a gauge over the alpine
areas, it may not be able to capture precipitation for the entire grid.
Hence, the nearest neighbor method might induce some uncertainties to
the results, particularly in the high-altitude regions such as the QTP.
Moreover, the ground-based precipitation observations were implicitly
assumed to be robust and error-free. However, they are likely to be
subjected to various biases such as the wetting and evaporation losses,
wind-induced undercatch, and underestimation of trace precipitation
(Ye et al., 2004), which might be another important source of the un-
certainties. In addition to the grid-to-point methods, the another avenue
to evaluate the SPPs is first to interpolate the precipitation observations
to the grids of the SPPs, and then compare them with the precipitation
estimates of the SPPs at each grid, as did in many previous studies (e.g.
Chen and Li, 2016; Tang et al., 2016; Chiaravalloti et al., 2018; Paredes-
Trejo et al., 2019). This approach has not been adopted in this study
considering that the interpolation algorithms could bring some addi-
tional errors and uncertainties to the performance assessments (Hu
et al., 2018), especially in the regions with complex terrains and sparse
rain gauges such as the QTP and XJ.

As mentioned before, the national-level meteorological stations are
very unevenly distributed over mainland China. The density is rela-
tively high in southeast China, while it is low in northwest China and
the QTP. The varying densities of the precipitation gauges might also be
an important source of the uncertainties. The terrains over southeast
China are relatively flat, which, together with the high-density gauge
networks, could result in a robust evaluation of the SPPs. However, the
terrains over the northwest China and the QTP are relatively complex,
which is accompanied with low-density gauge networks, and could
bring large biases to the performance evaluations. Tian et al. (2018)
have investigated the dependency of the performance assessments on
the gauge density, and found a low-density gauge network tends to
underestimate the performance of IMERG, which has also been reported
by Tang et al. (2018). This highlighted that a higher-density pre-
cipitation network is more desirable for an accurate and robust as-
sessment of the SPPs. Hence, we highly recommended to carry out more
regional evaluations of the SPPs by using the observations from not
only the easily accessible national-level rain gauges, but also some
local-level ones, which together would generate a denser gauge net-
work.

6. Conclusions

In this study, we evaluated and integrated two state-of-the-art SPPs,
i.e., SM2RAIN-ASCAT (SM2RASC) and IMERG, over mainland China by
using the ground-based observations from 701 meteorological stations.
The primary difference between the two SPPs lies in that SM2RASC is
obtained from the satellite soil moisture data through an innovative and
bottom-up approach, while IMERG is obtained through the conven-
tional and top-down manner. The two SPPs were integrated through a
nudging scheme, resulting in an additional merged product IMERG&

13

Journal of Hydrology 581 (2020) 124456

SM2R. The performance of IMERG and SM2RASC as well as the merged
product were evaluated and compared by using both the continuous
measures (i.e., CC, NRMSE and Rbias) and categorical metrices (i.e.,
POD, FAR and CSI). The evaluations were carried out for the calibration
period (2007-2011) and validation period (2012-2017) of the in-
tegration algorithm, respectively. Further, the seasonal and spatial
variabilities of the performance, and the performance dependence on
the elevations and precipitation magnitudes were further explored.

Results indicate that, in terms of CC, IMERG outperforms SM2RASC,
while, interestingly, vice versa is the case at the monthly scale. In terms
of NRMSE, SM2RASC shows a comparable performance with IMERG at
the daily scale, while it exhibits a better performance than IMERG at the
monthly scale. Regarding the capability in detecting precipitation
events, IMERG also achieves a better performance than SM2RASC, as
indicated by the higher CSI values. Spatially, the IMERG product
overall outperforms SM2RASC in the humid subregions (i.e., SEC, YZ
and YGP), but it performs worse than SM2RASC in the semi-arid sub-
region (i.e., NWC). Both IMERG and SM2RASC show pronounced sea-
sonal and spatial variabilities regarding the performance. They tend to
perform better in the wet seasons (summer and autumn) than in the dry
seasons (winter and spring). In terms of CC, the IMERG product per-
forms better in the humid subregions than in the semi-arid subregions,
followed by the complex mountainous subregion QTP and the arid
subregion XJ, while SM2RASC performs better in the semi-arid sub-
region than the other subregions. Both of them perform relatively worse
in XJ and QTP. The further analyses demonstrate that the performance
of the SPPs are closely correlated to the elevations and precipitation
magnitudes. The correlations and their significances, however, vary
between IMERG and SM2RASC, and between different time scales and
different evaluation metrics.

The integrated product IMERG&SM2R outperforms its parent pro-
ducts significantly. In the validation period 2012-2017, it could in-
crease the median CC by up to 25.86% and 7.23%, respectively, at the
daily and monthly scales, and reduce the median NRMSE by up to
14.72% and 24.62%, respectively, compared to the parent products.
Moreover, the median CSI could be increased by 4.80-70.07% when the
precipitation threshold is greater than 1 mm/day. The results demon-
strate the great potential of integrating the bottom-up and top-down
SPPs for generating more accurate precipitation estimates. We believe
the findings of the study will not only provide useful information to the
data users to select an appropriate SPP, but also to the data producers to
further enhance their precipitation retrieval algorithms.
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