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A B S T R A C T

The interpolation algorithms and the satellite-based precipitation products (SPPs) are two major approaches to
estimating spatially distributed precipitation. This would inevitably raise the questions: whether the inter-
polation algorithms could outperform the SPPs or vice versa? And what’s the implications for hydrological
modeling? These questions, however, have received little attention in the literature. This study compared the
performances of two quasi-physically based interpolation algorithms (i.e., MicroMet and PrecLaps) with the
widely used SPPs, i.e., Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (TMPA) and
Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG), in and around the Babao
River Basin (BRB), a meso-scale mountainous watershed on the Qinghai-Tibet Plateau. Meanwhile, the hydro-
logical utilities of the interpolated and the satellite-based precipitation were evaluated by using the Distributed
Hydrology Soil Vegetation Model (DHSVM). Results indicate that TMPA and IMERG perform worse than the
interpolation algorithms in estimating daily precipitation, while they show comparable and even higher per-
formance in reproducing monthly precipitation. Both the interpolation algorithms and the SPPs have an obvious
lower performance in winter than the other seasons. DHSVM with the TMPA-based or IMERG-based pre-
cipitation, when not subjected to additional calibration, performs worse than those with the interpolated pre-
cipitation in simulating streamflow. Nevertheless, interestingly, the ET simulations consistently match well with
the independent remote sensing (RS)-based ET product, as indicated by the higher coefficient of determination
(R2 ≥ 0.85) and Nash-Sutcliffe efficiency (NSE ≥ 0.72). The additional calibration of DHSVM with the satellite-
based precipitation could enhance the streamflow simulation accuracy substantially, with the NSE increasing by
70.59–132% in the validation period. This, however, would bring about larger discrepancies between the si-
mulated and the RS-based ET in summer. The study further discussed the implications of these findings for
hydrological modeling over the data-scarce mountainous watersheds, and revealed the uncertainties associated
with the rain gauge density.

1. Introduction

Precipitation is one of the key factors affecting watershed hydrology
and water resource systems. It varies significantly both in space and
time (Bárdossy and Pegram, 2013). Hence, accurate and reliable in-
formation regarding the temporal and spatial variabilities of pre-
cipitation are of vital importance for a wide range of applications
(Camera et al., 2014; Sun et al., 2018) such as hydrological and

ecological modeling (Lima et al., 2018), water resource managements
(Supit et al., 2012), flood and drought monitoring (Hui-Mean et al.,
2018; Yuan et al., 2019), and terrestrial ecosystem studies (Gritti et al.,
2006; Mo et al., 2019).

Rain gauge is the traditional method used to measure precipitation
at the point scale of the Earth’s surface (Li et al., 2018). Theoretically,
the spatial patterns of precipitation at the basin or regional scales can
be well captured if the gauge networks are dense enough.
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Unfortunately, in reality, the rain gauges are usually sparsely and un-
evenly distributed, particularly in some less developed regions as well
as the remote mountainous areas (Duan et al., 2019). Consequently, the
interpolation algorithms are typically used together with the ground-
based measurements to derive spatially distributed precipitation (Tobin
et al., 2011; Camera et al., 2014; Huang et al., 2019). To date, various
interpolation schemes have been proposed and developed, ranging from
the simplest deterministic approach such as the Thiessen polygon and
inverse distance weighting (IDW) methods, to the intermediate-com-
plexity approaches such as the MicroMet (Liston and Elder, 2006) and
precipitation lapse (PrecLaps) algorithms which take into account the
effects of topography, and to some other more complexed geostatistical
methods such as the Kriging. The performance of the interpolation al-
gorithms depends on many factors (Hwang et al., 2012) such as the
spatio-temporal scales of the precipitation estimates, the mechanism of
the methods, the gauge density as well as the topographic features. In
recent years, many efforts have been devoted to compare the perfor-
mance and the hydrological influences of different spatial interpolation
techniques. Camera et al. (2014) assessed the performance of 15 in-
terpolation techniques in reproducing daily precipitation over topo-
graphically complex areas, and reported that their relative ranks are
closely associated with the station density and rainfall amounts. Xu
et al. (2015) compared three interpolation techniques for daily rainfall
estimations in Sichuan Province of China, and concluded that the or-
dinary CoKriging (CK) is the optimal method. Zhang et al. (2017a)
found that the physically based inverse distance and elevation weighted
(PBIDEW) method is more suitable than the inverse distance weighted
(IDW) method in estimating precipitation for hydrological modelling in
the topographically complex mountainous watersheds. Huang et al.
(2019) found that the interpolation approach based on the information
diffusion principle and the IDW and geostatistical interpolators provide
similar spatial distributions for annual precipitation. Ossa-Moreno et al.
(2019) compared the interpolation approaches of different complexities
in the upper Aconcagua catchment in central Chile, and recommended
the utilization of the method based on the residuals between observa-
tions and WorldClim data or Climate Hazards Group Infrared Pre-
cipitation with Station (CHIRPS) data. Besides the rain gauge, weather
radar is another ground-based tool used to measure precipitation across
large domains with fine spatiotemporal resolutions. However, it in-
volves a lot of problems such as the ground clutter and beam blockage,
the calibration of the relations between reflectivity and rainfall in-
tensity for different types of precipitation, and the limited distributions
around the globe (Delrieu et al., 2009; Sun et al., 2018).

In addition to the ground-based observations, the satellite-based
precipitation products (SPPs) emerge as an additional and promising
approach to reproduce the spatial patterns of precipitation at the basin,
regional and global scales. Since the Tropical Rainfall Measuring
Mission (TRMM), a joint mission between the National Aeronautics and
Space Administration (NASA) of the United States and the Japan

Aerospace Exploration Agency (JAXA), was launched in 1997
(Kummerow et al., 1998), a series of SPPs have been developed and are
freely available to the public. Among them, Tropical Rainfall Measuring
Mission (TRMM) multi-satellite precipitation analysis (TMPA)
(Huffman et al., 2007) and its successor Integrated Multi-Satellite Re-
trievals for Global Precipitation Measurement (IMERG) (Huffman et al.,
2014) are perhaps the most widely used ones in a variety of researches
and operational applications. Nevertheless, they are inherently sub-
jected to some systematic and random errors, arising from the retrieval
algorithms, the shortcomings of the instruments, the indirect mea-
surements and the sampling uncertainties (Bharti and Singh, 2015; Li
et al., 2015; Ebrahimi et al., 2017). Hence, a region-specific assessment
is an essential step before their applications.

Currently, numerous studies have evaluated the performances of the
TMPA and IMERG products over different regions of the world at var-
ious spatio-temporal scales by directly comparing them against the
ground-based observations (Bharti and Singh, 2015; Yong et al., 2015;
Xu et al., 2017; Beck et al., 2019), or by the indirect modeling-based
inference with a focus on hydrological utilities or operational flood
modeling (e.g. Li et al., 2015; Camici et al., 2018; Belabid et al., 2019;
Duan et al., 2019; Yuan et al., 2019). In particular, the researchers in
the field of hydrometeorology have given much attention to the per-
formance of TMPA and IMERG over the mountainous areas where the
spatial patterns of precipitation are typically not well captured by the
ground-based observations due to the paucity of rain gauges and the
strong complexity of the climatic conditions. Meng et al. (2014) eval-
uated the hydrological utilizes of the TMPA-3B42V6 product in the
source region of Yellow River, and proved that it is not suitable for
long-term hydrological predictions. El Kenawy et al. (2015) assessed
the TMPA-3B42 product over north-eastern Iberia and highlighted the
needs of further improvements of the precipitation retrieval algorithms
over the areas of heterogeneous terrain. Bharti and Singh (2015) vali-
dated the TMPA 3B42V7 product over the Himalayan region, and
concluded that it exhibits a better performance for the lower-altitude
regions but exacerbates over the higher-altitude ones. Kim et al. (2016)
reported that TMPA is applicable for hydrological modeling in the
mountainous region of South Korea. Ebrahimi et al. (2017) evaluated
the performance of the TMPA 3B42 product over the Tibetan Plateau,
and demonstrated that it has deficiency in capturing daily precipitation.
Yuan et al. (2017) reported the feasibility of the bias corrected IMERG
and TMPA 3B42V7 products in hydrological simulations in a data-
sparse mountainous watershed in Myanmar. Khan et al. (2018) sug-
gested that the utilization of TMPA product for watershed hydrological
simulation is a valuable alternative in data-scarce regions, like the
Upper Indus Basin. Wang et al. (2019) evaluated and compared the
IMERG (V05B) and TMPA 3B42V7 products under over the Hexi Region
with complex terrains in northwest China, and concluded that they
underestimate precipitation in the high-altitude mountainous areas.
These studies could contribute valuable information to both the data
users and producers. Nevertheless, there are obviously conflicting re-
sults regarding the performance and the hydrological utilities of the
TMPA and IMERG products over the mountainous watersheds, which
calls for further investigations.

From the literature reviews, it is very clear that, in most cases, the
performance of the interpolation algorithm and the SPPs were assessed
separately in the past. However, since both of them are the commonly
used methods to deriving spatially distributed precipitation, a key
driving variable for distributed hydrological models, it would inevitably
raise two important questions: (i) whether the interpolation algorithms
could outperform the SPPs or vice versa, especially over the data-scarce
mountainous areas? and (ii) what’s the implications for hydrological
modeling? To our best knowledge, however, there questions have been
given rare attention in the literature. Hence, the primary objectives and
motivations of this study are (i) to compare the performances of two
quasi-physically based interpolation algorithms (i.e., MicroMet and
PrecLaps) with the widely used SPPs (i.e., TMPA 3B42V7 and IMERG)

Nomenclature

Acronyms

BRB Babao River Basin
PrecLaps Precipitation lapse
SPPs Satellite-based precipitation products
DHSVM Distributed Hydrology Soil Vegetation Model
MicroMet Meteorological Distribution System for High-Resolution

Terrestrial Modeling
TMPA Tropical Rainfall Measuring Mission (TRMM)

Multisatellite Precipitation Analysis
IMERG Integrated Multi-Satellite Retrievals for Global

Precipitation Measurement
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in and around the Babao River Basin (BRB), a meso-scale mountainous
watershed on the northeast Qinghai-Tibet Plateau; and meanwhile, (ii)
to assess the hydrological utilities of the interpolated and the satellite-
based precipitation through the modeling experiments by using the
Distributed Hydrology Soil Vegetation Model (DHSVM). The rest of the
paper is organized as follows. After the introduction, the study area and
data are briefly described in Section 2. Section 3 presents the metho-
dology used in this research. The results and discussion are arranged in
Section 4 and Section 5, respectively; and the conclusions are sum-
marized in the last section.

2. Study area and data

2.1. Study area

The Heihe River Basin (HRB) is a typical endorheic river basin in the
arid region of northwest China. Its upstream area, lying between
98.0°E–101.3°E and 38.0°N–42.0°N, is located on the northeastern
Qinghai-Tibetan Plateau. The Babao River Basin (BRB), which is the
eastern tributary of the upstream HRB, was focused in this study
(Fig. 1). It serves as a good case study considering that it is a typical

mountainous watershed within which only one national-level meteor-
ological station (G03) exists. The BRB is a meso-scale watershed with a
drainage area of approximately 2,500 km2. It is characterized by
complex terrains, and has elevations ranging from 2686 m to 4916 m
above sea level. The basin has a continental alpine semi-humid climate
with an annual precipitation ranging 270–600 mm/year and a mean
annual temperature less than 1 °C (Zhang et al., 2017b). Snowfall is an
important component of precipitation in the cold season (winter); and
the spring snowmelt plays an important role in streamflow generations
in the BRB (Wang et al., 2015). As shown in Fig. 1, there are seven
vegetation types within the study area, of which the alpine meadow,
alpine sparse vegetation (APS) and shrub account for approximately
90% of the total study area. The soil textures include sandy loam, loam,
and silt/silt loam (Lu et al., 2011); and the soil depth exhibits a strong
spatial variability, varying from 5.66 to 180 cm (Song et al., 2016; Yang
et al., 2016).

2.2. Data

As listed in Table 1, three categories of data were used in this study.
The first one mainly includes the data used for model setup and

Fig. 1. Location of the Babao River Basin (BRB) and the maps of vegetation (a), soil texture (b) and soil depth (c).
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parametrization. The meteorological forcing data of five national-level
stations (Fig. 1, G1-5), including maximum and minimum temperature,
precipitation, relative humidity and wind speed, were obtained from
the National Meteorological Information Center (NMIC) (http://data.
cma.cn/). In addition, the observations from another seven local rain
gauges were further collected from the Water Resources Bulletin of
Gansu Province (WRBGP) (http://www.gssl.gov.cn/). The 90-m local
Digital Elevation Model (DEM), clipped from the ASTER Global DEM,
was used to define the topography and generate stream map and net-
work. The 1:100,000 vegetation map (Zhang et al., 2018c), the patterns
of soil texture (Lu et al., 2011) and soil depth, and the data of soil
hydrological properties (Song et al., 2016; Yang et al., 2016) were used
to define the vegetation and soil types, and to parametrize the soil
physical characteristics. Meanwhile, the leaf area index (LAI) data at
the spatial resolution of 1 km, which was reconstructed from the
MODIS NDVI product through the Harmonic Analysis of Time Series
(HANTS) algorithm (Jia et al., 2011), was adopted to estimate the
monthly LAI. All the data of the first category except for the meteor-
ological data were collected from the Science Data Center for Cold and
Arid Regions (SDCCAR) (http://westdc.westgis.ac.cn). The data of the
second category were mainly used for model calibration and validation.
The daily streamflow observations at the outlet of the BRB (i.e., the
Qilian station) were obtained from the WRBGP for the period
1998–2013. Besides, the Remote Sensing (RS)-based product, which
was derived through an operational software system (ETWatch) for
regional evapotranspiration (ET) monitoring (Wu et al., 2012), was
used to crosscheck the simulations of DHSVM.

The data of the last category, i.e., the TMPA 3B42 and IMERG
products, were used for the modeling experiments. The TMPA 3B42
product covers the quasi-global areas ranging 50° N-50° S with a
0.25° × 0.25° spatial resolution and a 3-hourly temporal resolution
from January 1998 to present, while its successor IMERG covers the
globe with a higher spatial and temporal resolutions (0.1° × 0.1°,
30 min) from June 2000 to present. The key advancement of IMERG
over TMPA is the extended capability to capture solid precipitation and
light rain (< 0.5 mm h−1). The latest versions of the post-real-time
TMPA 3B42 and IMERG products for the period 2001–2014 were used
in this study, and would be simply referred to TMPA and IMERG
hereafter for conciseness. These data are provided by the National
Aeronautics and Space Administration, and can be freely downloaded
from the Goddard Earth Sciences Data and Information Services Center
(GES DISC) (https://disc.gsfc.nasa.gov/). As we known, the post-real-
time TMPA and IMERG products have been climatologically adjusted
month by month using the Global Precipitation Climatology Center
(GPCC) monthly full/monitoring gauge product. However, there are
only 194 international exchange stations across China within the GPCC
network (Sheng et al., 2013; Wang et al., 2018). None of rain gauges
used in this research belong to the international exchange stations,
leading to an independent assessment of TMPA and IMERG.

3. Methodology

3.1. Quasi–physically based precipitation interpolation algorithms

3.1.1. MicroMet
The Meteorological Distribution System for High-Resolution

Terrestrial Modeling (MicroMet) is an intermediate-complexity and
quasi-physically based model that was designed to produce high-re-
solution meteorological forcing distributions based on the relationships
between climatic variables and the surrounding landscapes (primarily
topography) (Liston and Elder, 2006). It has been widely used to per-
form meteorological interpolations over the mountainous areas with
complex terrains (e.g. Mernild et al., 2017; Cao et al., 2018; Zhang
et al., 2018b; Zhao et al., 2019). Within the framework of MicroMet,
precipitation is distributed over a spatial domain through a two-step
process. First, the observations and elevations of the rain gauges are
interpolated horizontally to the model grids by using a Barnes objective
analysis scheme which adopts a distance-dependent weighting function
(Koch et al., 1983). The weight (w) assigned to a precipitation station is
calculated use Eq. 1.

⎜ ⎟= ⎛
⎝

− ⎞
⎠

w r
f dn

exp
( )

2

(1)

where r is the distance between the interpolated grid cell and the rain
gauge; and f dn( ) is a parameter that defines the shapes of the filter
response function, and is determined by the data spacing and dis-
tribution (Liston and Elder, 2006). Second, the interpolated precipita-
tions of the model grids are adjusted vertically through Eq. 2.
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where P and P0 are the adjusted and interpolated precipitation, re-
spectively; Z and Z0 are the actual and interpolated elevations, re-
spectively; and β is the topography-based adjustment factor that varies
from month to month.

3.1.2. PrecLaps
The precipitation lapse (PrecLaps) scheme is a relatively simple

approach that performs interpolation according to the precipitation
lapse rate (i.e., the decrement of precipitation with height) and the
elevation difference between the model grid and rain gauge.
Specifically, it estimates precipitation at the grid where rain gauge is
absent by using Eq. (3).

∑= + −P w P γ Z Z(1 ( ))
i

Nsta

i i i
(3)

where P and Pi are the interpolated and measured precipitation, re-
spectively; Z and Zi are the elevations of the model grid and rain gauge,
respectively; wi is the weight assigned to the rain gauge i, which is
estimated through the IDW method; Nsta is the number of gauges used

Table 1
Data used in this study.

Category Data Spatial resolution Source

Model setup and parametrization Meteorological data 12 station NMIC/WRBGP
DEM 90 × 90 m ASTER GDEM
Vegetation map 1:100,000 SDCCAR
Soil texture 1 km SDCCAR
Soil depth 90 m SDCCAR
Soil hydrological parameters 90 m SDCCAR
LAI 1 km SDCCAR

Model calibration and validation Streamflow 1 station WRBGP
RS-based ET 1 km SDCCAR

Modeling experiments TMPA 3B42 (Version 7) 0.25° GES DISC
IMERG (Version 6) 0.10° GES DISC

L. Zhang, et al. Journal of Hydrology 583 (2020) 124629

4

http://data.cma.cn/
http://data.cma.cn/
http://www.gssl.gov.cn/
http://westdc.westgis.ac.cn
https://disc.gsfc.nasa.gov/


for interpolation; and γ is the precipitation lapse rate. The PrecLaps
algorithm was selected in this research mainly due to its simplicity and
more importantly, it is a built-in scheme in DHSVM.

3.2. Performance of the interpolation algorithms and the SPPs

The interpolation algorithms and the SPPs (i.e., TMPA and IMERG)
were evaluated by using the gauge-based observations in and around
the BRB. In terms of SPPs, the precipitation estimates in the grid that
contains the rain gauge were directly compared with the corresponding
observations. Regarding the interpolation algorithms, the assessment
was conducted by using the leave-one-out cross-validation method.
More specifically, one of the rain gauges is left out, for which pre-
cipitation was interpolated from the remaining ones, and then verified
against the observations. The interpolations were carried out at the
daily scale by using the MicroMet and PrecLaps algorithms, respec-
tively. The grid size of the interpolation was set to 0.25° (about 28 km),
in consistent with the TMPA product. As shown in Table 2, the topo-
graphy-based adjustment factor (β) of MicroMet was estimated for each
month through the least square fit of Eq. 2; and the precipitation lapse
rate (γ) of PrecLaps was derived based on the linear relationship be-
tween the mean annual precipitation and the elevations of the rain
gauges.

The performance of the interpolation algorithms and the SPPs were
quantitatively assessed through the typical statistical measures in-
cluding (i) the correlation coefficient (CC); (ii) relative bias (Rbias); (iii)
root mean square error (RMSE); and (iv) normalized RMSE (NRMSE),
which are defined as in Eqs. 4, 5, 6 and 7, respectively. A higher value
of CC together with lower absolute values of Rbias, RMSE and NRMSE
signify better performance of the interpolation algorithm or the SPPs,
and vice versa.
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where Pi and Pi
obsare the precipitation estimates of the SPPs (or the

interpolation algorithms) and the observations, respectively, at the time
step i; Pmean and Pobs

mean are the mean values of the precipitation estimates
and observations, respectively; and n is the number of time steps.

3.3. Distributed hydrology soil vegetation model

3.3.1. Model description
The Distributed Hydrology Soil Vegetation Model (DHSVM) is a

high-resolution and process-based hydrological model that describes
the dynamics of snow cover, soil moisture, ET, and runoff at the
catchment scale (Wigmosta et al., 1994). The model was originally
designed for mountainous regions with complex terrains, and its source
codes are freely available to the public. The latest version of DHSVM,
i.e., version 3.1.2, was selected in this study. DHSVM represents a

watershed by a series of regular grids with the same size based on DEM,
each of which is assigned with appropriate vegetation and soil para-
meters. Within the framework of DHSVM, (i) the ET is modeled using a
two-layer canopy model; (ii) the snow accumulation and melt are si-
mulated through a mass and energy balance model; (iii) the unsaturated
moisture movements through multiple rooting zone soil layers are de-
scribed by Darcy’s Law; (iv) the lateral saturated subsurface flow is
routed through a cell-by-cell approach while the overland flow is routed
through either the cell-by-cell approach or the kinematic wave model
(Zhang et al., 2018a); and (v) the channel flow is modeled using a ro-
bust linear storage routing algorithm. More details about the model
could be found in Wigmosta et al. (1994), Storck et al. (1998) and
Wigmosta and Perkins (2001). DHSVM experienced a rapid develop-
ment after its born in 1994, and has been widely used for a variety of
applications such as the hydrological process modeling (Du et al., 2007;
Cuo et al., 2008; Zhang et al., 2016), the hydrological impact assess-
ment (Alvarenga et al., 2018; Zhang et al., 2018b; Yearsley et al.,
2019), and the sediment transport simulation (Lanini et al., 2009).

3.3.2. Model setup and calibration
DHSVM was setup with a 150-m spatial resolution to ensure an

acceptable computational efficiency. The variable infiltration capacity
(VIC) model (Liang et al., 1994) was utilized as a meteorological forcing
disaggregator to estimate sub-daily (3-hour) meteorological values
from the daily ones in order to meet the general requirement of DHSVM
(Zhang et al., 2018b). The built-in PrecLaps algorithm was used to in-
terpolate precipitation across the BRB. The stream map and network
were generated using the AML script that is available at the official site
of the model (http://dhsvm.pnnl.gov/). The DHSVM model was run for
the period 2000–2013 at the sub-daily time scale (i.e., 3 h). The first
year (2000) was reserved for model warm-up in order to mitigate the
effects of inaccurate initial conditions. The period from 2001 to 2004
was selected as the calibration period, and the remaining one (i.e.,
2005–2013) as the validation period.

The calibration of DHSVM was performed through a “trial and
error” process. The sensitive parameters of DHSVM were first identified
through the global sensitivity analysis algorithm, i.e., the extended
Fourier amplitude sensitivity test (EFAST) (Saltelli et al., 1999). We
selected eight soil-related parameters (i.e., Lateral Conductivity (LC),
Exponential Decrease (ED), Maximum Infiltration (MI), Manning
Coefficient (MC), Filed Capacity (FC), and Pore Size Distribution (PSD),
Bubbling Pressure (BP), Depth Threshold (DT)), and three vegetation-
related parameters (i.e., Leaf Area Index (LAI), Leaf Albedo (LA) and
Minimum Resistance (MR)) to conduct the sensitive analysis. As shown
in Fig. 2, the identified sensitive parameters include FD, LC, ED, LAI, BP
and PSD, for which the global sensitivity indexes are greater than 0.10.
These sensitive parameters were divided into two groups: uncalibrated
and calibrated ones. The uncalibrated group consists of LAI and FD,
which were parametrized according to the available RS-based LAI
product (Jia et al., 2011) and the data of soil properties (Song et al.,
2016; Yang et al., 2016). They were assumed to be “true”, and were not
subjected to further calibration. The remaining ones belong to the ca-
librated group; and each of them was adjusted at a time until the si-
mulations of streamflow at the outlet of the BRB are completely sa-
tisfactory.

Table 2
Parameters determined for the interpolation algorithms.

Interpolation algorithms Parameter

PrecLaps Precipitation lapse rate (γ, mm/km):144
MicroMet Monthly adjustment factor (β, km−1): 0.00, 0.09, 0.15, 0.17, 0.20, 0.22, 0.19, 0.21, 0.16, 0.17, 0.00, 0.00
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3.4. Hydrological modeling experiments

As shown in Table 3, we designed six modeling experiments to
evaluate the hydrological utilities of the interpolated and the satellite-
based precipitation. The experiment DHSVM-PrecLaps is in line with
the simulations of the calibrated DHSVM, and serves as the baseline
scenario. In DHSVM-MicroMet, the precipitation over the BRB were
estimated via the MicroMet algorithm, while in the experiments
DHSVM-TMPA-UnCal and DHSVM-IMERG-UnCal, they were estimated
via the TMPA and IMERG products, respectively. The parameters as
well as the other model settings were kept constant for the four ex-
periments (i.e., DHSVM-PrecLaps, DHSVM-MicroMet, DHSVM-TMPA-
UnCal and DHSVM-IMERG-UnCal). Besides, we further designed two
another experiments (i.e., DHSVM-TMPA-Cal and DHSVM-IMERG-Cal),
in which DHSVM with the satellite-based precipitation were subjected
to additional calibration. The grid size of DHSVM (150 m) is smaller
than that of the precipitation data (0.25° for TMPA and 0.1° for IMERG).
In this study, we did not further interpolate the coarse precipitation to
the model grid (150 m), and assumed that precipitation is uniform
within the coarse grids. The streamflow simulation accuracy of DHSVM
was evaluated via the visual hydrograph inspection and the statistical
indexes including the RMSE, coefficient of determination (R2) and
Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970). The RMSE is
defined in Eq.5; the R2 is equal to the square of CC; and the NSE is
defined as Eq.8. In addition, the ET simulations were crosschecked with
the independent RS-based ET product (Wu et al., 2012).
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where Qi
obsand Qsim

i are the observations and simulations, respectively,
at time step i; Qobs

mean is the mean value of the observations; and n is the
number of time steps.

4. Results

4.1. Evaluations of the interpolation algorithms and the SPPs

Fig. 3 presents the boxplots of the performance metrics (CC, RMSE,
NRMSE and Rbias) for the SPPs (TMPA and IMERG) and the inter-
polation algorithms (PrecLaps and MicroMet) at multiple time scales.
We can see that the medium CC are 0.51 and 0.62, respectively, at the
daily scale for the PrecLaps and MicroMet schemes, higher than those
for TMPA (0.43) and IMERG (0.50). Meanwhile, the medium RMSE and
NRMSE for the two SPPs are greater than those for the interpolation
algorithms. The absolute medium Rbias are 10.68% and 5.35%, re-
spectively, for TMPA and IMERG, higher than those for the PrecLaps
and MicroMet algorithms, which are 1.20% and 1.98%, respectively.
These results indicate the interpolation algorithms perform better than
the SPPs in reproducing daily precipitation. At the monthly scale,
however, the PrecLaps algorithm performs slightly worse than the
TMPA and IMERG product, as indicated by the higher RMSE and
NRMSE. The MicroMet algorithm, which achieves a relatively high
medium CC (0.93), outperforms TMPA and the PrecLaps algorithm,
while it shows a comparable performance with IMERG. At the annual
scale, the interpolation algorithms perform better than the SPPs in
terms of CC, whereas they exhibit lower performance in terms of
NRMSE. Comparing the results at different time scales, we can see that
the interpolation algorithms and the SPPs perform apparently better in
estimating monthly precipitation than in reproducing daily and annual
ones. It should be mentioned that the PrecLaps algorithm tends to have
a higher variability of the performance, in comparison to the
MicroMet algorithm and the SPPs, as indicated by the larger ranges of
the performance metrics.

Fig. 4 shows the boxplots of the performance metrics in different
seasons including spring (March to May), summer (Jun to August),
autumn (September to November) and winter (December to February).
Similar patterns of the seasonal variations of the performance can be
observed for the interpolation algorithms and the SPPs. In terms of CC,
it shows an increasing trend from spring to summer and autumn, and
then drop rapidly in winter. The medium RMSE is highest in summer,

Fig. 2. Global and first-order sensitivity indexes of the soil-related and vegetation-related parameters in DHSVM.

Table 3
Modeling experiments designed to evaluate the hydrological utilities of the interpolated and the satellite-based precipitation.

Modeling experiments Precipitation estimates (spatio-temporal resolutions) Model parameters

DHSVM-PrecLaps PrecLaps (0.25°/daily) —
DHSVM-MicroMet MicroMet (0.25°/daily) Same with DHSVM-PrecLaps
DHSVM-TMPA-UnCal TMPA (0.25°/daily) Same with DHSVM-PrecLaps
DHSVM-IMERG-UnCal IMERG (0.10°/daily) Same with DHSVM-PrecLaps
DHSVM-TMPA-Cal TMPA (0.25°/daily) Additional calibration
DHSVM-IMERG-Cal IMERG (0.10°/daily) Additional calibration

L. Zhang, et al. Journal of Hydrology 583 (2020) 124629

6



followed by autumn, spring and winter, due to the higher precipitation
amounts than the other seasons. The medium NRMSE, on the contrary,
shows the highest value in winter, followed by spring, autumn and
summer. The MicroMet algorithm consistently performs better than
IMERG, PrecLaps and TMPA in all the seasons, in terms of CC, RMSE
and NRMSE. In winter, the medium Rbias is positive and large for TMPA
and the interpolation algorithms, indicating an overestimation of pre-
cipitation. However, it has a noticeable negative value for IMERG,
implying an underestimation of precipitation. Overall, the SPPs and the
interpolation algorithms have an obvious lower performance in the cold
winter than the other seasons, in line with the findings of the previous
studies conducted around our study region (Peng et al., 2014; Yang
et al., 2017). The seasonal alterations of the performance metrics at the
monthly scale, not presented here, are very similar to those at the daily

scale.

4.2. Hydrological simulations in different experiments

Figs. 5 and 6 compare the daily and monthly streamflow observa-
tions against the simulations obtained from the modeling experiments
at the outlet of the BRB for the period 2001–2013. In the experiment
DHSVM-PrecLaps, the simulated streamflow hydrograph exhibits a
reasonably good agreement with the observed one. As shown in
Table 4, the values of NSE, R2 and RMSE are 0.55 (0.65), 0.58 (0.68),
and 9.99 (9.53) m3/s, respectively, for the daily (monthly) streamflow
during the calibration period; and they are 0.53 (0.63), 0.56 (0.67), and
9.38 (6.82) m3/s, respectively, during the validation period. The dis-
crepancies between the simulations and the observations mainly lie in

Fig. 3. Boxplots of the performance metrics (CC, RMSE, NRMSE and Rbias) for the SPPs (TMPA and IMERG) and the interpolation algorithms (PrecLaps and
MicroMet). The median values of the performance metrics are shown at the top of each box. The first, second and last columns present the results at the daily,
monthly and annual scales, respectively.
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the spring streamflow and peak flows. The spring streamflow tends to
be underestimated in most of the years. This is possibly due to the
absence of the representation of the soil freezing/thawing processes in
DHSVM, which plays an important role in the streamflow generations
in the BRB. Owing to the freezing process, the water could be preserved
in the soil with the form of ice during the cold winter, which would in
turn lead to high soil moisture during the warm spring due to the
thawing process (Zheng et al., 2018). This could induce high stream-
flows when confronted with moderate or high precipitation in spring.
The peak flows also tend to be underestimated, which might be par-
tially due to the deficiency of DHSVM in representing the preferential
flow, and partially due to the exponential decay assumption of the soil
lateral saturated hydraulic conductivity (Zhang et al., 2018b). In the
experiment DHSVM-MicroMet, the R2 and NSE are slightly higher, and
meanwhile, the RMSE is lower than those in DHSVM-PrecLaps during
the calibration and validation periods. The relatively better perfor-
mance of DHSVM with the interpolated precipitation of MicroMet is
possibly due to the higher precision of the precipitation estimates, as
shown in Fig. 3.

In the experiment DHSVM-TMPA-UnCal, the hydrological model
could overall reconstruct the variation patterns of streamflow, as in-
dicated by the high R2 which are 0.53 and 0.71, respectively, for the
calibration and validation periods at the monthly scale. Nevertheless,
the values of NSE are relatively low, which are 0.17 (0.21) and 0.21
(0.25), respectively, during the calibration and validation periods for
daily (monthly) streamflow. Meanwhile, the RMSE is obviously higher
than those in DHSVM-PrecLaps and DHSVM-MicroMet. In the experi-
ment DHSVM-IMERG-UnCal, similarly, the NSE and R2 (or RMSE) is
significantly lower (or higher) than those in DHSVM-PrecLaps and

DHSVM-MicroMet. The streamflow simulation accuracy is even lower
than in DHSVM-TMPA-UnCal during the calibration period, but it be-
comes higher during the validation period. The relatively poor perfor-
mance of the hydrological model in DHSVM-TMPA-UnCal can be ex-
plained by the overestimated summer precipitation of TMPA,
particularly in the years 2002–2007, as depicted in Fig. 6a, in com-
parison to the interpolation algorithms. The poor streamflow simulation
precision in DHSVM-IMERG-UnCal, however, is mainly due to the un-
derestimation of precipitation by IMERG over the study region, parti-
cularly in the years 2003, 2008 and 2013, which has also been reported
by Wang et al. (2019).

The experiments DHSVM-TMPA-Cal and DHSVM-IMERG-Cal are
similar to DHSVM-TMPA-UnCal and DHSVM-IMERG-UnCal, respec-
tively, with the exception that DHSVM were subjected to additional
calibrations. We can clearly see that, after the further calibration, the
streamflow simulation accuracy could be improved significantly. More
specifically, the NSE could increase from 0.17 (0.21) to 0.32 (0.40) at
the daily (monthly) scale in DHSVM-TMPA-Cal during the calibration
period, and from 0.21 (0.25) to 0.44 (0.58) during the validation
period. In the experiment DHSVM-IMERG-Cal, the NSE could increase
from 0.04 (0.06) to 0.40 (0.48) at the daily (monthly) scale in the ca-
libration period, and from 0.34 (0.38) to 0.58 (0.71) in the validation
period. DHSVM with the TMPA-based precipitation, after the additional
calibration, still performs worse than those with the interpolated pre-
cipitation. However, DHSVM with the IMERG-based precipitation out-
performs those with the interpolated precipitation in terms of stream-
flow simulation during the validation period, as indicated by the
highest NSE and R2, and the lowest RMSE.

Fig. 7 shows the comparisons and relations between the

Fig. 4. Seasonal variations of the performance metrics (CC, RMSE, NRMSE and Rbias) for the SPPs (TMPA and IMERG) and the interpolation algorithms (PrecLaps
and MicroMet) at the daily scale.
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independent RS-based ET estimates and the simulations of different
modeling experiments for the period 2000–2011. We can see that the
variations of the ET could be well captured in the experiments DHSVM-
PrecLaps, DHSVM-MicroMet and DHSVM-TMPA-UnCal and DHSVM-
IMERG-UnCal, as indicated by the higher R2 (≥0.85) and NSE (≥0.72).
The discrepancies are primarily observed in spring. This is possibly due
to the underestimation of soil moisture by DHSVM as mentioned above,
which could limit the water available for ET. As plotted in Fig. 7a, b and
c, the performance metrics are very close in the experiments DHSVM-
PrecLaps, DHSVM-MicroMet, and DHSVM-TMPA-UnCal, implying

comparable ET simulations. This is because, on the one hand, the dis-
crepancies between the precipitation estimates of the interpolation al-
gorithms and the TMPA product mainly occur in summer (Fig. 6a),
during which, however, the ET are unlikely subjected to water stress.
On the other hand, the other climatic factors such as the air tempera-
ture and humidity and solar radiation, which could also affect the ET
simulations profoundly, were kept consistent for all the experiments. In
DHSVM-TMPA-UnCal, the streamflow was overestimated due to the
higher precipitation estimates by TMPA. To better match with the
streamflow observations, the additional model calibration in DHSVM-

Fig. 5. Comparison of the daily streamflow observations with the simulations generated from different modeling experiments (a, DHSVM-PrecLaps; b, DHSVM-
MicroMet; c, DHSVM-TMPA-UnCal and DHSVM-IMERG-UnCal; d, DHSVM-TMPA-Cal and DHSVM-IMERG-Cal) at the outlet of the BRB from January 1, 2001 through
December 31, 2013.
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TMPA-Cal reduced the simulated streamflow by increasing the ET in
summer. Consequently, as marked by the red circle in Fig. 7e, the
modeled summer ET tend to be overestimated, and diverge more sig-
nificantly from the RS-based one in comparison to the experiment
DHSVM-TMPA-UnCal, leading to a relatively low NSE (0.65). In
DHSVM-IMERG-UnCal, the ET simulations agree better with the RS-
based ET product than all the other experiments, as indicated by the
highest NSE (0.81). Nevertheless, the summer streamflow was appar-
ently underestimated in this experiment due to the lower precipitation
estimates by IMERG. The further model calibration in DHSVM-IMERG-
Cal increased the summer streamflow by decreasing the ET. Hence, as
marked by the blue circle in Fig. 7f, the summer ET simulations become
more negatively biased in comparison to DHSVM-IMERG-UnCal, re-
sulting in a relatively low NSE (0.64).

5. Discussion

5.1. Interpolated or satellite-based precipitation?

The interpolation algorithm and the SPPs are the two major

approaches to estimating spatially distributed precipitation, a funda-
mental input for distributed hydrological models. This study compared
and evaluated the interpolation algorithms and the SPPs in estimating
precipitation at multiple time scales. We found that the quasi-physically
based interpolation algorithms (i.e., PrecLaps and MicroMet) outper-
form the TMPA product in capturing daily precipitation, particularly in
the cold season (winter). The deficiency of TMPA in reproducing daily
precipitation has also been reported in some other studies conducted in
Qinghai-Tibet Platea (e.g. Ebrahimi et al., 2017; Hussain et al., 2017;
Yan et al., 2017), as well as those carried out over the mountainous
areas in some other regions such as the upper Indus Basin (Khan et al.,
2018), and the Chindwin River basin in Myanmar (Yuan et al., 2017).
This might be explained by the following reasons. To begin with, the
snow cover within and around the BRB could induce strong scattering
in winter, which would lead to overestimations of precipitation by the
passive microwave sensor (i.e., TRMM Microwave Imager, TMI)
(Ebrahimi et al., 2017; Xu et al., 2017), as indicated by the high positive
value of median Rbias (26.19%) in Fig. 4. Moreover, the localized and
short-term orographic precipitation might not be captured by both the
infrared (IR) and passive microwave instruments on-board TRMM
(Bharti and Singh, 2015; Xu et al., 2017). Additionally, the other factors
such as the time lag and spatial mismatches between the rain gauge and
TMPA could also contribute to explain the low performance of TMPA at
the daily scale. Hence, the TMPA product cannot be substituted for
ground measurements in terms of daily precipitation estimations, as
suggested by Camici et al. (2018). Nevertheless, the TMPA product
shows a good performance in reproducing monthly precipitation, which
is slightly better than the PrecLaps interpolation algorithm. This is
partially due to that, as mention in the section of 2.2, TMPA has been
subjected to a month-by-month adjustment by using the ground-based
observations (i.e., the GPCC data), and partially due to the relatively
lower complexities of the monthly precipitation patterns than the daily
one. Hence, the TMPA product still has a good potential in the field of
hydrometeorology, particularly in the remote mountainous regions
without ground-based observations. The low performance of TMPA in
capturing daily precipitation but higher performance in estimating
monthly precipitation over the mountainous areas have also been re-
ported in many other previous studies (e.g. Ebrahimi et al., 2017;
Hussain et al., 2017; Yan et al., 2017; Yuan et al., 2019).

Comparing the two SPPs, IMERG consistently outperforms its pre-
decessor TMPA at the daily, monthly and annual scales, in line with

Fig. 6. Comparison of the monthly precipitation estimates (a) and the streamflow simulations (b) in the different modeling experiments.

Table 4
Performance of DHSVM in different modeling experiments during the calibra-
tion and validation periods (values outside and in parentheses are the results for
the daily and monthly streamflows, respectively).

Modeling Experiments Calibration period (2001–2004)

NSE R2 RMSE (m3/s)

DHSVM-PrecLaps 0.55 (0.65) 0.58 (0.68) 9.99 (9.53)
DHSVM-MicroMet 0.57 (0.66) 0.58 (0.68) 9.85 (7.40)
DHSVM-TMPA-UnCal 0.17 (0.21) 0.42 (0.53) 13.61 (11.26)
DHSVM-IMERG-UnCal 0.06 (0.04) 0.37 (0.45) 14.48 (12.39)
DHSVM-TMPA-Cal 0.32 (0.40) 0.38 (0.48) 12.38 (9.82)
DHSVM-IMERG-Cal 0.40 (0.48) 0.45 (0.55) 11.63 (9.16)
Modeling Experiments Validation period (2005–2013)

NSE R2 RMSE (m3/s)
DHSVM-PrecLaps 0.53 (0.63) 0.56 (0.67) 9.38 (6.82)
DHSVM-MicroMet 0.54 (0.65) 0.56 (0.67) 9.25 (6.58)
DHSVM-TMPA-UnCal 0.21 (0.25) 0.54 (0.71) 12.16 (9.68)
DHSVM-IMERG-UnCal 0.34 (0.38) 0.50 (0.61) 11.14 (8.79)
DHSVM-TMPA-Cal 0.44 (0.58) 0.48 (0.63) 10.28 (7.52)
DHSVM-IMERG-Cal 0.58 (0.71) 0.59 (0.73) 8.90 (6.05)
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many previous studies (e.g. Tang et al., 2016; Xu et al., 2017; Yuan
et al., 2018). As a result, the advantage of the interpolation algorithms
over IMERG for daily precipitation estimations is smaller than that over
TMPA. At the monthly scale, the IMERG product even shows a better
and comparable performance in comparison to the PrecLaps and
MicroMet algorithms. These results are encouraging, and confirm that
IMERG should be a better alternative than TMPA in estimating pre-
cipitation over the data-scarce regions. Nevertheless, IMERG doesn’t
exhibit a better performance than TMPA in winter, as indicated by the
relatively low CC and higher absolute Rbias. This indicates that more
efforts are still needed to improve the IMERG product in the cold season
over the mountainous areas.

Although the interpolation algorithms outperform the SPPs in esti-
mating daily precipitation, their performance are not very satisfactory
as well, mainly due to the deficiencies of the interpolation algorithms.
To begin with, the precipitation-elevation relationship, which is derived
from the monthly and annual observations, may not be necessarily
accurate at the daily scale (Garen et al., 1994). Second, the precipita-
tion frequency tends to be overestimated, owing to that any of the
station used for interpolation that have precipitation could lead to the
occurrence of precipitation in the interpolated grid cell. This drawback

might be mitigated by introducing a precipitation occurrence prob-
ability within the framework of the interpolation algorithms, as did by
Thornton et al. (1997). In addition, the other factors such as the to-
pographic aspect and slope can also affect precipitation estimates
considerably, which, however, are not considered by the interpolation
algorithms. Hence, the interpolation algorithms could be further im-
proved, which might enhance their advantages over the SPPs.

5.2. Implications for hydrological modeling

The interpolated and the satellite-based spatially distributed pre-
cipitations were used to drive the fully distributed hydrological model
DHSVM to assess their hydrological utilities. We found that DHSVM
with the TMPA-based precipitation, even after the additional calibra-
tion, had overall a lower performance than that with the interpolated
precipitation in modeling streamflow. This indicates that the inter-
polated precipitation, even from scarce rain gauges, should be more
preferred than the TMPA-based one for streamflow simulations in the
mountainous BRB. Regarding the IMERG-based precipitation, however,
we found that the streamflow simulations accuracy could be higher
than those with the interpolated precipitation during the validation

Fig. 7. Comparison of the independent RS-based ET estimations with the simulations generated from different modeling experiments.
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period, if DHSVM was subjected to additional calibration. This suggests
that IMERG provides a valuable alternative for driving hydrological
models to simulate streamflow over the data-scarce mountainous areas
such as the BRB. In other words, IMERG could be used as a substitute to
the gauge-based interpolated precipitation in case that only the
streamflow is focused. The SPPs were proved to have a relatively low
performance in capturing daily precipitation, but a good performance
in estimating monthly precipitation. It could be inferred that they might
be utilized to detect the trends of precipitation and streamflow, both of
which are of great interest to the managers and policy makers. Fig. 8
depicts the variations and trends of the observed annual streamflows
and the simulations generated in different experiments. We can see a
consistent increasing trend for the period 2001–2007 together with a
concurrent decreasing trend for the period 2007–2013, in line with the
observations. This confirms the usefulness of the SPPs for determining
the sign of streamflow trends, although not for accurately estimating
the magnitudes of the trends. In other words, both the TMPA and
IMERG products could be used as a substitute to the interpolated pre-
cipitation if the sign of streamflow trend is targeted. The above results
also imply that the utilities of the SPPs depend heavily on the goals of
the hydrological modeling.

It should be noticed that DHSVM with the TMPA-based or IMERG-
based precipitation tends to exhibit different performance over dif-
ferent periods in simulating streamflow. Taking a closer look at the
streamflow hydrography (Fig. 5), we can observe that the modeled
streamflows in DHSVM-TMPA-UnCal are very close to DHSVM-Pre-
cLaps and DHSVM-MicroMet for the years 2001, 2009 and 2012–2013
due to the similar precipitation estimates, but they were obviously
overestimated in the years 2002–2007. The further model optimization
in the experiment DHSVM-TMPA-Cal could therefore not consistently
improve the streamflow simulation accuracy for all the years. More-
over, as listed in Table 4, the streamflow simulation accuracy in the
experiment DHSVM-IMERG-UnCal/Cal is obviously better in the vali-
dation period than the calibration period. These results indicate that the
hydrological utilities of the SPPs might vary for different time periods,

underlining the necessity of conducting a hydrological evaluation of the
SPPs for a relatively long period in order to give a more holistic as-
sessment.

The hydrological utilities of the SPPs were typically assessed by
using only the streamflow observations in many previous studies (e.g.
Kim et al., 2016; Yan et al., 2017; Yuan et al., 2017; Li et al., 2018;
Duan et al., 2019; Jiang and Bauer-Gottwein, 2019). In this study, we
have also crosschecked the modeling results with the independent RS-
based ET product. Interestingly, the simulated ET match well with the
independent RS-based ET product (NSE ≥ 0.72 and R2 ≥ 0.85) in the
experiments DHSVM-PrecLaps, DHSVM-MicroMet, DHSVM-TMPA-
UnCal and DHSV-IMERG-UnCal, although the streamflow simulation
accuracy are obviously lower in the latter two experiments than the
former two. The additional calibration of DHSVM with the TMPA-based
or IMERG-based precipitation in the experiments DHSVM-TMPA-Cal or
DHSVM-IMERG-Cal would enhance the streamflow simulation accuracy
substantially, as presented in Section 4.2. However, the simulated
summer ET would diverge more significantly from the RS-based ET
estimates than those without additional calibration (i.e., DHSVM-
TMPA-UnCal or DHSVM-IMERG-UnCal). Thus, the improvement of
streamflow estimates is actually achieved by sacrificing the ET simu-
lation accuracy, highlighting that the streamflow observations alone
may not be adequate for evaluating the hydrological utilities of the
SPPs. This also indicates that the hydrological model driven by the
satellite-based precipitation, if calibrated solely against the streamflow
observations, might not be adequate for water balance analyses or
water accounting, since the precipitation estimation errors of the SPPs
could be propagated to some other water balance components such as
ET, as proven in this study.

5.3. Uncertainties

In this study, the observations of 12 rain gauges were used to assess
the performance of two quasi-physically interpolation algorithms in and
around the BRB through the leave-one-out cross-validation technique.

Fig. 8. Variations and trends of the observed and simulated annual streamflows for the two sub-periods 2001-2007 and 2007-2013.
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The distances between two neighbor rain gauges are mostly less than
50 km, which could contribute to explain the reason why the inter-
polation algorithms could have better performances than the SPPs in
capturing daily precipitation. However, the distribution of the rain
gauges might be very sparse in some other regions such as the north-
west Qinghai-Tibetan Platea. In this case, the interpolation algorithms
may not still outperform the SPPs, particularly the IMERG product,
considering that the nearest stations may not be able to represent the
precipitation variations in the interpolated areas. There is another case
that the rain gauges are very unevenly distributed in some large wa-
tersheds. In this case, the interpolation algorithm may not be able to
capture the spatial variability of precipitation at the watershed scale,
although it could have a higher performance than the SPPs when ver-
ified against the observations. Hence, the findings of the study might
not be applicable to the regions with very sparse or unevenly dis-
tributed rain gauges, which necessitates further investigations in the
future.

Rain gauge density was recognized as an important source of un-
certainties in the evaluations of the SPPs (e.g. Amitai et al., 2012; Tang
et al., 2018; Tian et al., 2018). In this study, we further assessed the
performance of the interpolation algorithm (i.e., PrecLaps) and the SPPs
(TMPA and IMERG) with the increasing numbers of rain gauges. More
specifically, we used the five national-level meteorological stations as
the baseline, and then randomly increased the number of rain gauges to
the totally twelve. Because of the different combinations of the addi-
tional rain gauges, there would be some variations of the performance
metrics. For instance, there would be totally 15 random combinations
when two additional rain gauges are selected from the remaining six
ones. The results are plotted in Fig. 9. We can see that, at the daily scale,
the CC exhibits a consistent upward trend with the increasing number
of rain gauges for the interpolation algorithm and the SPPs. Meanwhile,
the RMSE shows an opposite downward trend. The results indicate that

the performance of the interpolation algorithm and the SPPs would
increase with more dense rain gauge network. Thus, if fewer rain
gauges are utilized, the performance of the SPPs would be under-
estimated, as reported by Tang et al. (2018) and Tian et al. (2018). At
the monthly scales, we can observe that there are no obvious trends of
the CC and RMSE with the increasing number of rain gauges. This
implies that the rain gauge density has a relatively low influence on the
performance of the interpolation algorithms and the SPPs at the
monthly scale. We can also see from Fig. 9 that the performance metrics
of the interpolation algorithm show larger ranges for different combi-
nations of the additional rain gauges, compared with those of the SPPs.
This is due to the fact that the performance of the PrecLaps algorithm is
not only intimately associated with the rain gauge density, but also with
their distributions.

6. Conclusions

This study compared the performances of two quasi-physically
based interpolation algorithms (i.e., MicroMet and PrecLaps) with the
widely used SPPs (i.e., TMPA 3B42V7 and IMERG) at multiple time
scales in and around the Babao River Basin (BRB), a meso-scale
mountainous watershed on the northeast Qinghai Tibet Plateau.
Meanwhile, the fully distributed hydrological model DHSVM was used
to evaluate the hydrological utilities of the interpolated and the sa-
tellite-based precipitation through different modeling experiments (i.e.,
DHSVM-PrecLaps, DHSVM-MicroMet and DHSVM-TMPA-UnCal/Cal
and DHSVM-IMERG-UnCal/Cal).

Results indicate that the SPPs perform worse than the interpolation
algorithms in reproducing daily precipitation, while they show com-
parable and even higher performance in estimating monthly pre-
cipitation. At all the time scales, the IMERG product outperforms
TMPA; and meanwhile, the MicroMet algorithm outperforms the

Fig. 9. Varying performance of the interpolation algorithm (PrecLaps) and the SPPs (TMPA and IMERG) with the increasing numbers of rain gauges. The box plots
show the variations of the performance metrics resulting from different combinations of the additional rain gauges. The left and right columns present the results for
the daily and monthly precipitation, respectively.
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PrecLaps scheme. Both the interpolation algorithms and the SPPs ex-
hibit an obvious seasonal variation regarding the performance, in-
creasing from spring to summer and autumn, and then dropping rapidly
in the cold winter. DHSVM with the TMPA-based or IMERG-based
precipitation, when not subjected to additional calibration in the ex-
periments DHSVM-TMPA-UnCal and DHSVM-IMERG-UnCal, has an
apparent lower performance in simulating streamflow, compared to
those with the interpolated precipitation in DHSVM-PrecLaps and
DHSVM-MicroMet. However, interestingly, the ET simulations con-
sistently agree well with the independent RS-based ET product in these
experiments, as indicated by the higher performance metrics
(NSE ≥ 0.72 and R2 ≥ 0.85). The additional calibration of DHSVM
with the TMPA-based or IMERG-based precipitation in DHSVM-TMPA-
Cal and DHSVM-IMERG-Cal could enhance the streamflow simulation
accuracy significantly. The NSE could increase by 70.59–109.52% and
86.84–132%, respectively, at the daily and monthly scales in the vali-
dation period. Nevertheless, the simulated summer ET would diverge
more significantly from the RS-based ET product than those without
additional calibration. The improvement of streamflow estimates is
actually achieved by sacrificing the ET simulation accuracy, high-
lighting that the streamflow observations alone may not be adequate
for evaluating the hydrological utilities of the SPPs, particularly if not
only the streamflow but also some other water balance components are
focused.

The further analyses revealed that the utilities of the SPPs depend
heavily on the goals of the hydrological modeling. Moreover, the hy-
drological model with the satellite-based precipitation could have
varying performance for different periods, implying the necessity of
conducting a hydrological evaluation of the SPPs for a relatively long
period. In addition, the performance of the SPPs and the interpolation
algorithms are closely associated with the rain gauge density. One
limitation of the study is that only one specific watershed was focused.
Thus, further work needs to be carried out to verify whether our results
can be generalized in some other mountainous watersheds with similar
characteristics.
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