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ABSTRACT: Although process-based distributed hydrological models (PDHMs) are 17 

evolving rapidly over the last few decades, their extensive applications are still 18 

challenged by the computational expenses. This study attempted, for the first time, to 19 

apply the numerically efficient MacCormack algorithm to overland flow routing in a 20 
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representative high-spatial resolution PDHM, i.e., the distributed 21 

hydrology-soil-vegetation model (DHSVM), in order to improve its computational 22 

efficiency. The analytical verification indicates that both the semi and full versions of 23 

the MacCormack schemes exhibit robust numerical stability and are more 24 

computationally efficient than the conventional explicit linear scheme. The 25 

full-version outperforms the semi-version in terms of simulation accuracy when a 26 

same time step is adopted. The semi-MacCormack scheme was implemented into 27 

DHSVM (version 3.1.2) to solve the kinematic wave equations for overland flow 28 

routing. The performance and practicality of the enhanced DHSVM-MacCormack 29 

model was assessed by performing two groups of modeling experiments in the Mercer 30 

Creek watershed, a small urban catchment near Bellevue, Washington. The 31 

experiments show that DHSVM-MacCormack can considerably improve the 32 

computational efficiency without compromising the simulation accuracy of the 33 

original DHSVM model. More specifically, with the same computational environment 34 

and model settings, the computational time required by DHSVM-MacCormack can be 35 

reduced to several dozen minutes for a simulation period of three months (in contrast 36 

with one day and a half by the original DHSVM model) without noticeable sacrifice 37 

of the accuracy. The MacCormack scheme proves to be applicable to overland flow 38 

routing in DHSVM, which implies that it can be coupled into other PHDMs for 39 

watershed routing to either significantly improve their computational efficiency or to 40 

make the kinematic wave routing for high resolution modeling computational 41 
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feasible. 42 

Keywords: MacCormack scheme; Overland flow routing; DHSVM; Kinematic wave; 43 

Computational efficiency 44 

1 Introduction 45 

Overland flow is one of the major components of the hydrological cycle and has the 46 

most intimate interactions with human beings because of their coexistence in space 47 

and time (Wong, 2011). It is normally unsteady and non-uniform and, therefore, can 48 

be described by the St. Venant equations. Owing to the highly nonlinear nature of 49 

these equations which involve a high degree of complexity in their computation, 50 

various approximations of the St. Venant equations have been proposed for solving 51 

overland flow problems. The kinematic wave (KW) model, which was first developed 52 

by Lighthill and Whitham (1955), is one of such approximations and proves to be 53 

adequate for most practical overland flow situations (Akan and Houghtalen, 2003). 54 

The major assumption of the KW model is that the acceleration and pressure terms in 55 

the momentum equation are insignificant and, consequently, the friction slope is equal 56 

to the terrain slope (Miller, 1984). The KW model is essentially a set of nonlinear 57 

hyperbolic partial differential equations for which analytical solutions cannot be 58 

obtained except for a few idealized conditions. The finite difference (FD) numerical 59 

methods, which are generally classified into explicit and implicit schemes, are 60 

therefore frequently used to solve the KW equations. Both the explicit and implicit 61 
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FD methods have comparative strengths and weaknesses. The explicit FD schemes 62 

are easy to formulate and program, but are subjected to a necessary and insufficient 63 

condition for stability known as the Courant-Friedrichs-Lewy stability (CFL) 64 

condition (Chow et al., 1988). The CFL condition imposes a restriction on the 65 

workable time steps, which limits the computational efficiency and the practical 66 

applications of the explicit FD method. The implicit FD schemes, on the other hand, 67 

are unconditionally stable, but suffer from (i) high computational complexity due to 68 

the matrix operations; (ii) large memory demand; and (iii) deficiency in their 69 

applications to nonlinear problems (Kazezyılmaz-Alhan et al., 2005; Huang and Lee, 70 

2013). 71 

Process-based distributed hydrological models (PDHMs) are evolving rapidly 72 

over the last few decades (Paniconi and Putti, 2015). This is partly spurred by the 73 

tremendous advances in computing power, programming techniques and data 74 

availability; and partly by the increasing demands for spatially distributed 75 

hydrological simulations, impact assessments and interdisciplinary studies (Beven, 76 

2011; Fenicia et al., 2016). Nevertheless, the extensive applications of PDHMs are 77 

still challenged by their computational burden since PDHMs are mostly associated 78 

with solving nonlinear partial differential equations over large domains at fine 79 

spatiotemporal resolutions (Fatichi et al., 2016). In PDHMs such as the distributed 80 

hydrology-soil-vegetation model (DHSVM) (Wigmosta et al., 1994), the 81 

geomorphology-based hydrological model (GBHM) (Yang, 1998), and the water flow 82 
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and balance simulation model (WaSiM) (Schulla and Jasper, 2007), the routing of 83 

overland flow is usually described by the KW equations, owing to its simplicity and 84 

satisfactory accuracy compared to the St. Venant equations (Jain and Singh, 2005; 85 

Tsai and Yang, 2005; Yu and Duan, 2014). However, the computational efficiency of 86 

these models would be strictly constrained in case of using the conventional explicit 87 

FD schemes to solve the KW equations, because it usually requires very small time 88 

increments to comply with the CFL condition. For example, DHSVM routes the KW 89 

overland flow with the explicit linear scheme. We have tested it using the model’s test 90 

site data, which corresponds to a small urban watershed (31 km
2
) at a spatial 91 

resolution of 30 m, and found that it needs almost 186 hours to complete a 2.25 years 92 

simulation. The test was carried out on a Lenovo notebook PC with an Intel Core 93 

i7-2620M CPU and 8 GB RAM.  94 

Considering the complexity of the real world, and the strong spatial heterogeneity 95 

of land surface characteristics, more attentions are increasingly paid to high-spatial 96 

resolution PDHMs for a refined representation of hydrological processes 97 

(Ochoa-Rodriguez et al., 2015). The computational efficiency of PDHMs is even 98 

worse when they are applied to a large study domain with a high spatial resolution, 99 

since smaller spatial steps require much smaller time steps to achieve a stable solution 100 

to the KW equations with an explicit FD scheme. Thus, it is of great significance and 101 

practical importance to propose more efficient numerical methods to solve the KW 102 

equations for overland flow routing to reduce the computational cost.  103 
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The MacCormack FD method, which was initially proposed to solve the 104 

time-dependent compressive Navier-Stokes equations, is a popular and widely-used 105 

numerical algorithm in computational hydraulics (MacCormack, 2003; Tseng, 2010). 106 

Recently, some researchers have successfully applied the MacCormack algorithm to 107 

KW overland flow problems. Kazezyılmaz-Alhan et al. (2005) investigated the 108 

reliability of the explicit MacCormack scheme and compared it to the available 109 

analytical solutions and to a 4-point implicit FD method. They concluded that the 110 

MacCormack algorithm is computationally more efficient than the 4-point implicit 111 

method, although they are comparable in accuracy. Tseng (2010) applied the 112 

unconditionally stable implicit MacCormack scheme to solve the KW problem and 113 

demonstrated that it is a simple, accurate, highly stable, and greatly efficient solver. 114 

Huang and Lee (2013) reformulated the implicit MacCormack scheme and then 115 

applied it to two mountainous watersheds for 2D runoff simulations. They reported 116 

that the proposed method was significantly superior to the conventional algorithm in 117 

terms of computational efficiency.  118 

These previous studies consistently revealed the clear advantage of the 119 

MacCormack scheme over the other conventional numerical methods for solving the 120 

KW equations. None of them, however, have tested the applicability and advantage of 121 

the MacCormack scheme with a PDHM. This study, therefore, applies the 122 

MacCormack scheme to the KW overland flow routing in a representative 123 

high-spatial resolution PDHM (i.e., the DHSVM model). More specifically, the 124 
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behaviors of the semi and full versions of the MacCormack schemes were evaluated 125 

against analytical solutions for two synthetic overland flow cases with uniform 126 

rainfalls. Then the semi-MacCormack algorithm was implemented into DHSVM to 127 

improve the efficiency of routing its overland flow. The performance and 128 

practicability of the enhanced DHSVM model (DHSVM-MacCormack) were 129 

examined by carrying out two groups of modeling experiments in a small urban 130 

watershed in Washington. 131 

2 Methods 132 

The method section is organized as follows. Sections 2.1 and 2.2 briefly introduce the 133 

KW model and the MacCormack numerical scheme, respectively. Section 2.3 134 

describes the approach of implementing the MacCormack scheme into DHSVM. 135 

Finally, in Section 2.4, the methods of evaluating the performances of the 136 

MacCormack schemes are presented. 137 

2.1 Kinematic wave 138 

The 1D KW model for overland flow routing is defined by the following continuity 139 

and momentum equations. 140 

Continuity Equation:  141 

          
eq

t

A

x

Q









  (1) 142 

where Q is the discharge, A is the cross-sectional area of flow, x is the downslope 143 
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distance, t is the time, and qe is the rainfall excess rate per unit flow length.  144 

 Momentum Equation: 145 

 fSS 0  (2) 146 

in which So is the bed slope and Sf is the friction slope. The momentum equation can 147 

be expressed equivalently to the following relationship between Q and A. 148 

 
βαQA  

 (3) 149 

By combining Eq.2 with the Manning equation, Eq.3 can be derived as follows: 150 

 
5/3

3/2

)( Q
SC

np
A

fn

  (4) 151 

where n is the Manning roughness coefficient; P is the wetted perimeter, which can be 152 

considered equal to flow width for shallow water flow; and Cn equals to 1 for metric 153 

units and 1.49 for English units. Thus,
5/33/2 ))/( on SCnPα （  and 5/3β . 154 

 Differentiation of Eq. 3 with respect to t and substitution of this into Eq.1 gives: 155 

 
e

β q
t

Q
αβQ

x
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


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

 1  (5) 156 

Combining Eq.5 with dt
t

Q
dx

x

Q
dQ









 , it can be easily obtained that: 157 

 
1

1



βk

αβQdt

dx

dA

dQ
c  (6) 158 

where ck is the KW celerity.  159 

2.2 MacCormack numerical scheme 160 

The MacCormack scheme is a variation of the two-step Lax–Wendroff technique and 161 

belongs to the family of splitting methods. It has a second-order accuracy in time and 162 

space. The MacCormack scheme consists of two steps: a predictor step followed by a 163 
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corrector step (MacCormack, 1982; MacCormack, 2003). The spatial derivatives are 164 

approximated by forward differences in the predictor step, whereas they are 165 

approximated by backward differences in the corrector step. The implicit 166 

MacCormack scheme in delta form for approximating the KW equations is presented 167 

in Eqs. 7 and 8.  168 
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where i and n are the spatial and temporal indices, respectively; Δt and Δx are 171 

temporal and spatial steps, respectively; ΔA is the change in the cross-sectional area of 172 

flow; δA is the iteration variable; and qe is the rainfall excess rate per unit flow length. 173 

Note that the predictor step is first evaluated based on a backward sweep from the 174 

lower boundary (i.e., the greatest space index) to the upper boundary (i.e., the lowest 175 

space index); and the corrector step is then implemented through a sweep in a forward 176 

direction (Furst and Furmanek, 2011).  177 

The method is unconditionally stable provided that the parameter λ is chosen so 178 

that: 179 

 5.0   )0 ,
Δ

Δ
||(max macmac  αα

t

x
cλ k

 (9) 180 
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in which amac is a coefficient which mainly depends on the wave celerity and 181 

watershed characteristics (Huang and Lee, 2013). If Δt already satisfies the stability 182 

condition of the explicit FD method, i.e., 0Δ/Δ||  txck
, the right-hand side of the 183 

above inequality vanishes and λ can thus be chosen to be zero. The implicit 184 

MacCormack scheme reduces to the explicit one in this case. 185 

2.3 DHSVM-MacCormack 186 

DHSVM is a fully distributed physically-based time-continuous model predominantly 187 

designed for mountainous regions with complex terrain. It can provide an integrated 188 

and dynamic representation of the spatial patterns of snow cover, soil moisture, 189 

evapotranspiration, and runoff at a spatial resolution represented by the digital 190 

elevation model (DEM) (Wigmosta et al., 1994). DHSVM (version 3.1.2) was 191 

selected as a representative PDHM in this study, mainly because of the free 192 

availability of the source code as well as the test site data. DHSVM divides a 193 

watershed into computational grid cells centered on DEM nodes, each of which is 194 

assigned with appropriate vegetation characteristic and soil property. Using the grid 195 

cell as basic unit, DHSVM (i) estimates evapotranspiration using a two-layer canopy 196 

model; (ii) simulates snow accumulation and melt using a mass and energy balance 197 

model; (iii) describes unsaturated moisture movement through multiple rooting zone 198 

soil layers using Darcy’s Law; (iv) routes lateral saturated subsurface flow through a 199 

cell-by-cell approach using either the kinematic or diffusion approximation; (v) routes 200 
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overland flow using either a cell-by-cell approach or the KW approach; and (vi) 201 

simulates channel flow using a robust linear storage routing algorithm. More details 202 

about the model are available in Wigmosta et al. (1994), Storck et al. (1998) and 203 

Wigmosta and Perkins (2001). DHSVM has been widely utilized in various research 204 

fields such as hydrological process simulation (Du et al., 2007; Cuo et al., 2008), 205 

hydrological impact assessment (Thanapakpawin et al., 2007; Cuo et al., 2009; 206 

Dickerson-Lange and Mitchell, 2014; Alvarenga et al., 2016), and sediment erosion 207 

and transport modeling (Doten et al., 2006; Lanini et al., 2009).  208 

In DHSVM, overland flow is primarily generated through a saturation excess 209 

mechanism, despite that a relatively crude infiltration excess parameterization has 210 

been included (Cuo et al., 2008). The directions of overland flow are determined 211 

based on DEM using the four-direction (D4) algorithm which assigns flow from each 212 

grid cell to its four adjacent neighbors. For example, as illustrated in Figure 1, the 213 

outflow from pixel 5 is subdivided into the downslope neighboring pixels in the 214 

eastern and southern directions, i.e., cell 6 (Q51) and cell 8 (Q52). The proportion of 215 

outflow in each direction is assumed to be equal to the ratio of flow width in that 216 

direction to the total flow width. Essentially, this is consistent with the Digital 217 

Elevation Model Networks (DEMON) model which describes two-dimensional and 218 

aspect-driven flow movements (Costa-Cabral and Burges, 1994). The D4 approach 219 

allows the inflows to a certain cell originate from multiple up-gradient adjacent cells. 220 

For instance, the inflows to cell 5 include the outflows from upstream cells 2 (Q22) 221 
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and 4 (Q41).  222 

 223 

Figure 1. Illustration of DEM-based overland flow routing in DHSVM 224 

The MacCormack scheme uses forward finite-differences for the spatial 225 

derivatives in the predictor step (Eq.7). When applying this scheme to the DEM-based 226 

overland flow routing system in DHSVM, it means that the variable
2/1n

iA at the 227 

current grid (i) needs to be estimated using the iteration variables (
n

iQ 1 ,
2/1

1δ 



n

iA ) at the 228 

downslope grid (i+1). However, the current grid may have multiple outflows to the 229 

downslope adjacent grid cells (Figure 1); and, meanwhile, the downslope grids may 230 

have multiple inflows coming from other upslope grid cells. In this case, the outflows 231 

at the downslope cells should be decomposed in order to predict the outflow of the 232 

current cell. The decomposition, however, is a tough challenge in theory and practice. 233 

This makes it difficult to couple the full implicit MacCormack scheme into DHSVM 234 

for overland flow routing. Nevertheless, Huang and Lee (2013) modified the full 235 

implicit MacCormack scheme to make it usable in the DEM-based overland flow 236 
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routing system, in which the flow directions are determined using the D8 algorithm. 237 

The modified MacCormack scheme in delta form for approximating the KW 238 

equations is as follows: 239 
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 The predictor step presented in the full MacCormack scheme (Eqs. 7 and 8) has 243 

been removed in the modified MacCormack scheme. Hence, we name the modified 244 

version of the MacCormack scheme as the semi-MacCormack. The 245 

semi-MacCormack algorithm can be converted to the following recursive formulas in 246 

order to implement it into DHSVM: 247 
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in which 
t

iQ 1 and 
t

iA 1 are, respectively, the total inflow from the up-gradient adjacent 251 

grids and the corresponding cross-sectional area at current time t; 
t

iQ  and 
t

iA  are, 252 

respectively, the outflow and its cross-sectional area at current grid cell i and time t; Δt 253 

and Δx are the time step and the grid size, respectively; and ΔA is the change in 254 

cross-sectional area of flow. The boundary values for the grid cells on the upstream end 255 

are assigned as zero (Wang and Hjelmfelt, 1998; Jain and Singh, 2005), i.e., 0t

uQ  256 

and 0t

uA , where 
t

uQ  and 
t

uA are the outflow and its cross-sectional area, 257 
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respectively, at the boundary grid cells indicated by subscript u. 258 

Figure 2 presents the flow chart for routing the overland flow using the 259 

semi-MacCormack scheme in DHSVM. Specifically, the procedure consists of five 260 

main steps: (i) read initial conditions at start time; (ii) enter into the external time loop; 261 

(iii) enter into the internal spatial loop; (iv) solve the KW equations using the 262 

semi-MacCormack algorithm; (v) advance to the next time step and repeat the steps 263 

outlined above until reaching the end time. The enhanced DHSVM model is referred 264 

to as DHSVM-MacCormack. 265 

 266 
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Figure 2. Flowchart for overland flow routing in DHSVM using the 267 

semi-MacCormack scheme 268 

2.4 Numerical experiments for the MacCormack schemes 269 

2.4.1 Experiment setup for analytical evaluation of the 270 

MacCormack schemes 271 

An important advantage of the KW approach over the dynamic and diffusion wave 272 

approaches is that analytical solutions are possible for simple geometries (David and 273 

Michael, 1986). Eagleson (1970) provided the analytical solution for the KW 274 

overland flow with uniform rainfall. As shown in Table 1, two impermeable 275 

rectangular parking lots with different geometries are assumed to be subject to 276 

uniform rainfall with different durations and intensities. The hydrographs of flow 277 

depth at the end of the parking lots were calculated using the analytical approach, the 278 

explicit linear scheme, and the semi- and full-MacCormack schemes, respectively. 279 

The explicit linear scheme adopted in DHSVM is a commonly used FD method for 280 

solving the KW equations. Details about the KW computations with the explicit linear 281 

scheme have been documented by Chow et al. (1988). Capabilities of the numerical 282 

methods (i.e., the semi- and full-MacCormack algorithms, and the explicit linear 283 

scheme) were quantitatively assessed by using the performance indicators of the 284 

root-mean-square error (RMSE) and mean absolute error (MAE). Moreover, the CPU 285 

time requirements of different numerical methods were compared with each other. All 286 

file:///C:/Users/zl/Desktop/HYDROL25375_Revised_Manuscript_with_Track_Changes_nzt3.docx%23_ENREF_8
file:///C:/Users/zl/Desktop/HYDROL25375_Revised_Manuscript_with_Track_Changes_nzt3.docx%23_ENREF_8
file:///C:/Users/zl/Desktop/HYDROL25375_Revised_Manuscript_with_Track_Changes_nzt3.docx%23_ENREF_13
file:///C:/Users/zl/Desktop/HYDROL25375_Revised_Manuscript_with_Track_Changes_nzt3.docx%23_ENREF_4
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of the computations were run with a Lenovo notebook PC with an Intel Core 287 

i7-2620M CPU and 8 GB RAM.  288 

Table 1 Characteristics of the synthetic overland flow cases  289 

Test case 

Parking lot geometry  Rainfall 

Length 

(m) 

Slope Manning 

roughness 

coefficient 

 Intensity 

(mm/h) 

Duration 

(s) 

Case 1 182.88 0.0016 0.025  50.8 1,800 

Case 2 500.00 0.0100 0.005  100.0 1,500 

In the first synthetic overland flow case, the time increment (Δt) varied from 4 to 290 

39 s for the explicit linear scheme to satisfy the CFL stability condition, and it was 291 

purposely set to 50, 100, and 150 s for the MacCormack schemes with which the 292 

stability condition is violated. The spatial step (Δx) was set to 1 m for all of the runs. 293 

The coefficient αmac in Eq. (9) was calibrated to be 0.5 and 0.6 in the full- and 294 

semi-MacCormack schemes, respectively, to obtain the best fit results comparing to 295 

the analytical solution. In the second synthetic case, the time step (Δt) ranges from 0.5 296 

to 6 s for the explicit linear scheme to satisfy the CFL stability condition, but it was 297 

increased to 10, 20, and 50 s for the MacCormack schemes for the cases against the 298 

stability condition. Likewise, the spatial step (Δx) was set to 1 m for all numerical 299 

methods, as in Case 1. The coefficient αmac in Eq. (9) was best fitted to be 0.6 and 0.8 300 

in the full- and semi-MacCormack schemes, respectively. 301 
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2.4.2 Test sites and experiment setups for numerical 302 

evaluation of DHSVM-MacCormack  303 

The test data for DHSVM 3.1.2, which is freely available at the model’s official 304 

website (http://dhsvm.pnnl.gov/), was used to test the performance of the enhanced 305 

DHSVM model (i.e., DHSVM-MacCormack). The test site, Mercer Creek watershed, 306 

is a small urban watershed near Bellevue, Washington (Figure 3). The Mercer Creek 307 

river flows through Mercer Slough and finally ends in Lake Washington (Sun et al., 308 

2015). The watershed has a drainage area of approximately 31 km
2
, and is 309 

characterized by rugged topography with elevations ranging from 16 to 326 m above 310 

sea level. The primary land use types in the watershed are urban land and conifer 311 

forest; and the predominant soil type is sandy loam soil. The 3-hourly meteorological 312 

forcing data including air temperature, wind speed, relatively humidity, precipitation, 313 

and incoming shortwave and longwave radiations at two pseudo stations are available 314 

for the test basin. They were obtained from a hydrologically consistent dataset of land 315 

surface fluxes and states for the conterminous United States that was developed by 316 

Livneh et al. (2013) based on the observations from NOAA Cooperative Observer 317 

(COOP) stations. The streamflow from the Mercer Creek watershed has been 318 

monitored by US Geological Survey station (No. 12120000; 47°36'11"N, 319 

122°10'47"W). The streamflow records at a 15-min interval for the period from 320 

01/01/2012-00 to 03/31/2012-21 were used for model performance assessment. 321 

http://dhsvm.pnnl.gov/
file:///C:/Users/zl/Desktop/HYDROL25375_Revised_Manuscript_with_Track_Changes_nzt3.docx%23_ENREF_33
file:///C:/Users/zl/Desktop/HYDROL25375_Revised_Manuscript_with_Track_Changes_nzt3.docx%23_ENREF_33
file:///C:/Users/zl/Desktop/HYDROL25375_Revised_Manuscript_with_Track_Changes_nzt3.docx%23_ENREF_23
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 322 

Figure 3. Map showing the location and topography of the Mercer Creek watershed 323 

 As presented in Table 2, two groups of modeling experiments were designed and 324 

carried out to assess the performance and efficiency of DHSVM-MacCormack. The 325 

modeling in the first experiment group (Exp I) was performed using the original 326 

DHSVM model (version 3.1.2), in which the KW equations are solved with the 327 

explicit linear scheme for overland flow routing. The routing time increments (Δt) are 328 

variable and updated at the beginning of each model time step to ensure they comply 329 

with the CFL stability condition at each computational grid (Chow et al., 1988). In 330 

Exp I, we set the routing option to “KINEMATIC” and the grid size to 30 m, and 331 

assigned start and end times as 01/01/2012-00 and 03/31/2012-21, respectively. The 332 

other parameters and options were kept with the default values. The simulated 333 

streamflow was quantitatively evaluated against the measurements using the (i) 334 
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Nash-Sutcliffe efficiency (NSE) coefficient (Nash and Sutcliffe, 1970) and (ii) RMSE.  335 

Table 2 Modeling experiments for DHSVM-MacCormack 336 

Modeling 

experiment 
Model version 

Overland flow 

routing 

method 

Model  

time step 

(h) 

Routing 

time step (s) 

Exp I DHSVM 3.1.2 
KW & explicit 

linear 
3  Variable  

Exp II DHSVM-MacCormack 
KW & 

MacCormack 
3  

30, 60, 90, 120, 

150, 180, 210, 

240, 270, 300, 

600 

The second experiment group (Exp II) was undertaken with 337 

DHSVM-MacCormack, in which the KW equations are solved with the 338 

semi-MacCormack scheme. The routing time step was set to 30, 60, 90, 120, 150, 180, 339 

210, 240, 270, 300 and 600 seconds for the purpose of testing the performance of the 340 

MacCormack algorithm. Thus, DHSVM-MacCormack was run 11 times in Exp II, 341 

with the same model parameters and configurations as in Exp I. In addition to NSE 342 

and RMSE, the relative NSE and relative RMSE, as defined in Eqs.16 and 17, were 343 

used to evaluate the simulations of Exp II against those of Exp I. Moreover, the 344 

relative CPU time, as in Eq.18, was defined to evaluate the computational efficiency 345 

of DHSVM-MacCormack in comparison to the original DHSVM model.  346 
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where N is the total number of time steps during the simulation period; Qi is the 350 

simulated streamflow at the time step i; and Qm is the mean value of the simulated 351 

streamflow. 352 

The test site, Mercer Creek (MC) watershed, is relatively small. To assess 353 

impacts of watershed sizes on the computational time with the MacCormack scheme, 354 

DHSVM-MacCormack is also applied to a large watershed. This larger watershed is 355 

the upper Heihe River Basin (UHRB) with a drainage area of about 100,09 km
2
, as 356 

shown in Table 3, in northwest China. More details about this watershed is available 357 

in Zhang et al. (2016). The grid size, routing time step and simulation length were 358 

consistently set as 150 m, 600 s and 3 months, respectively, for both the small and 359 

large watersheds. The computational environment and model settings were kept the 360 

same for the different cases as listed in Table 3. Moreover, impacts of different 361 

modeling grid sizes (e.g., 30, 45, 60, 90 and 150 m) on the computational time with 362 

the original and enhanced DHSVM (i.e., DHSVM-MacCormack) models were 363 

investigated using the Mercer Creek watershed.  364 

Table 3 Applications of DHSVM-MacCormack to two catchments with different sizes 365 

Catchment 
Catchment size 

(km
2
) 

Simulation 

length (months)  

Grid size (m)/routing 

time step (s) 

Mercer Creek 

watershed 
31 3 150/600  
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Upper Heihe River 

Basin (UHRB) 
10,009 3 150/600  

3 Results and discussion  366 

3.1 Analytical verification  367 

Figure 4 presents the numerical results and analytical solution for the first synthetic 368 

overland flow case (Table 1). The flow depth time series produced by the 369 

MacCormack and explicit linear schemes match the analytical solution very well, 370 

although there are some small differences at the crest. This indicates that both the 371 

full-MacCormack and semi-MacCormack algorithms can work very well and are 372 

comparable to the explicit linear scheme in terms of simulation accuracy even when 373 

the time step does not satisfy the stability condition. Thus, the MacCormack 374 

approaches can relax the restriction on temporal and spatial intervals imposed by the 375 

CFL stability condition. When the time step is 150 s, the computational times of the 376 

full- and semi-MacCormack schemes was 0.006 and 0.003 s, respectively, which are 377 

about 7-15 times faster than that of the explicit linear scheme (0.046 s). Therefore, the 378 

MacCormack schemes can save the computation time considerably, compared to the 379 

explicit linear method. The RMSEs and MAEs are very small for all of the numerical 380 

methods, as indicated and summarized in Table 4, which confirms their reliability for 381 

solving the KW equations. The accuracy tends to decrease with increasing time steps 382 

for both the full- and semi-MacCormack schemes. Moreover, with a same time step, 383 
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the full-MacCormack scheme performs slightly better than the semi-MacCormack 384 

scheme, particularly for the recession limb of the hydrograph. This is reasonable since 385 

the predictor step of the full-MacCormack scheme has been removed in the 386 

semi-MacCormack scheme. 387 

 388 

Figure 4. Flow depth time series for Case 1 estimated using the full-MacCormack 389 

(left) and semi-MacCormack (right) schemes  390 

Table 4 A summary of performance of the numerical methods for synthetic overland 391 

flow cases 392 

Test case Numerical scheme 
Time step 

(Δt, s) 

RMSE 

(m) 
MAE (m) 

CPU time 

(s) 

Case 1 

Explicit linear 4-39  1.37×10
-4

 7.88×10
-5

 0.046 

Full-MacCormack 

50  4.26×10
-5

 1.40×10
-5

 0.018 

100  8.88×10
-5

 3.78×10
-5

 0.010 

150  1.38×10
-4

 6.97×10
-5

 0.006 

Semi-MacCormack 

50  9.19×10
-5

 5.97×10
-5

 0.009 

100  1.79×10
-4

 1.25×10
-4

 0.004 

150  2.68×10
-4

 1.94×10
-4

 0.003 

Case 2 
Explicit linear 0.5-6  3.23×10

-5
 1.85×10

-5
 1.090 

Full-MacCormack 10  1.12×10
-5

 2.46×10
-6

 0.406 
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20  2.27×10
-5

 6.61×10
-6

 0.186 

50  5.36×10
-5

 2.52×10
-5

 0.073 

Semi-MacCormack 

10  3.17×10
-5

 1.21×10
-5

 0.184 

20  5.49×10
-5

 2.19×10
-5

 0.092 

50  1.05×10
-4

 4.66×10
-5

 0.034 

Figure 5 shows the results of Case 2. The full-MacCormack scheme induces some 393 

small oscillations before reaching the equilibrium, while the semi-MacCormack 394 

scheme is lagged to reach the maximum flow depth. Despite of these discrepancies, 395 

the time series obtained by both MacCormack schemes are very close to the analytical 396 

solution, as well as to that simulated by the explicit linear scheme. As shown in Table 397 

4, all of the numerical approaches can produce good overland flow simulations for 398 

Case 2, with very small RMSEs and MAEs. Similar to Case 1, the full-MacCormack 399 

scheme slightly outperforms the semi-MacCormack method when a same time step is 400 

employed, although it requires slightly more computational time. Results in Figure 5 401 

clearly demonstrated that both the full- and semi-MacCormack schemes are more 402 

computationally efficient than the explicit linear scheme while achieving a similar 403 

accuracy. 404 
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 405 

Figure 5. Flow depth time series for Case 2 estimated using the full-MacCormack 406 

(left) and semi-MacCormack (right) schemes 407 

3.2 Evaluation of DHSVM-MacCormack  408 

Figure 6 presents daily and sub-daily (3 hourly) streamflow observations and the 409 

simulations obtained from the two groups of modeling experiments (i.e., Exps I and II) 410 

at the outlet of the Mercer Creek watershed for the period from January 1, 2012 to 411 

March 31, 2012. In Exp I, the original DHSVM model simulated a streamflow 412 

hydrograph that exhibits a reasonably good match with the observed one. The 413 

corresponding NSE and RMSE are 0.7852 and 0.3625 m
3
/s, respectively, for daily 414 

streamflow, and 0.6163 and 0.5757 m
3
/s, respectively, for sub-daily streamflow (Table 415 

5). The results indicate a good applicability of the original DHSVM model to the 416 

Mercer Creek watershed according to the model evaluation guidelines proposed by 417 

Moriasi et al. (2007). However, it takes a quite large CPU time of about one day and a 418 

half (35.50 h) to complete Exp I due to low computational efficiency of routing the 419 

overland flow. The considerable computational time requirement by the explicit linear 420 
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scheme in the original DHSVM model significantly restricts the practicality of 421 

DHSVM’s applications with the KW option for overland flow routing. The 422 

computational cost would become much worse when a longer-term, higher-resolution 423 

hydrological simulation is needed for a larger watershed. 424 

 425 

Figure 6. Comparison of daily (a) and sub-daily (b) streamflow observations with the 426 

simulations generated from the two groups of modeling experiments for the Mercer 427 

Creek watershed from January 1, 2012 through March 31, 2012 428 
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Table 5 Comparison of experiment results in terms of simulation accuracy of daily and sub-daily (in parentheses) streamflow and computational 429 

efficiency 430 

431 Modeling 

experiment 

Routing 

time step (s) 
NSE Relative NSE RMSE (m

3
/s) Relative RMSE 

CPU time 

(h) 

Relative 

CPU time 

Exp I Variable 0.7852 (0.6163) 1.0000 (1.0000) 0.3625 (0.5757) 0.0000 (0.0000) 35.50  1.0000 

Exp II 

30  0.7833 (0.6186) 0.9962 (0.9965) 0.3641 (0.5740) 0.0437 (0.0476) 3.37  0.0949 

60 0.7849 (0.6201) 0.9969 (0.9969) 0.3628 (0.5729) 0.0398 (0.0442) 1.70 0.0479 

90  0.7861 (0.6213) 0.9973 (0.9972) 0.3618 (0.5719) 0.0372 (0.0422) 1.19 0.0335 

120  0.7870 (0.6223) 0.9975 (0.9973) 0.3610 (0.5712) 0.0358 (0.0414) 0.86 0.0242 

150 0.7878 (0.6231) 0.9975 (0.9973) 0.3603 (0.5706) 0.0354 (0.0415) 0.70 0.0197 

180 0.7885 (0.6238) 0.9974 (0.9972) 0.3597 (0.5701) 0.0359 (0.0425) 0.64 0.0180 

210  0.7891 (0.6250) 0.9972 (0.9969) 0.3592 (0.5692) 0.0377 (0.0448) 0.50 0.0141 

240  0.7895 (0.6249) 0.9970 (0.9966) 0.3589 (0.5693) 0.0391 (0.0463) 0.45 0.0127 

270  0.7898 (0.6253) 0.9966 (0.9962) 0.3586 (0.5690) 0.0415 (0.0489) 0.40 0.0113 

300 0.7901 (0.6256) 0.9961 (0.9958) 0.3584 (0.5687) 0.0444 (0.0520) 0.37 0.0104 

600 0.7865 (0.6270) 0.9833 (0.9837) 0.3615 (0.5676) 0.0919 (0.1020) 0.20 0.0056 
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Simulated streamflow hydrographs from Exp. II with the enhanced DHSVM 432 

model (i.e., DHSVM-MacCormack) produced almost exactly the same results as 433 

those from Exp I (i.e., results overlapped on each other) when the routing time step 434 

(Δt) is less than 300 s (Figure 6). Only very small differences between Exps I and II 435 

can be discerned when Δt is increased to 300 and 600 s. As shown in Table 5, the 436 

NSEs and RMSEs of daily streamflow vary from 0.7833 to 0.7901, and from 0.3584 437 

to 0.3641 m
3
/s, respectively, with different routing time steps in Exp II, which are 438 

comparable to those of Exp I (0.7852 and 0.3625 m
3
/s). Using results from Exp I as 439 

the baseline, the relative NSEs and relative RMSEs span from 0.9833 to 0.9975, and 440 

from 0.0354 to 0.0919, respectively, for daily streamflow; and 0.98370.9973 and 441 

0.04140.1020, respectively, for the sub-daily streamflow. Such high relative NSEs 442 

together with the low relative RMSEs clearly indicate the comparable performance 443 

between the explicit linear scheme with DHSVM and the semi-MacCormack scheme 444 

with DHSVM-MacCormack. The narrow spans of the NSEs and RMSEs in Exp II 445 

show that the semi-MacCormack scheme still has space to further reduce the 446 

computation time without much compromise of the accuracy by using a larger time 447 

step. Specifically, the required CPU time, which decreases with increasing time 448 

intervals, is observed to be in the range of 0.20-3.37 h in Exp II, in stark contrast to 449 

35.50 h in Exp I. The relative CPU time of Exp II ranges from 0.0949 to 0.0056 450 

which is remarkably shorter than 1.0 from Exp I. These results again indicate that 451 

DHSVM-MacCormack can significantly improve the computational efficiency while 452 

obtaining almost the same simulation accuracy as that from the original DHSVM 453 
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model. In our experiment, the computational time of the original DHSVM model is 454 

about one day and a half (35.50 h) for a simulation period of three months. However, 455 

it can be cut down to several dozen minutes by using DHSVM-MacCormack instead 456 

without losing noticeable simulation accuracy.  457 

From Table 5, it is seen that the streamflow simulation accuracy in Exp II tends to 458 

improve slightly when the routing time steps become larger (30-300 s). This seems 459 

inconsistent with the finding of the analytical verification, i.e., the accuracy decreases 460 

as the time step increases. The seeming contradiction can be well explained by the 461 

differences between the observed and model simulated streamflow. Based on the 462 

model default parameters, the streamflow was actually slightly overestimated for the 463 

baseflow. Thus, the error introduced by the increase of computational time 464 

compensates the one caused by the model default parameters. More specifically, the 465 

overestimation of streamflow would be ameliorated with increasing routing time steps 466 

in the semi-MacCormack scheme, since overland flow tends to be underestimated 467 

gradually as revealed in the analytical verification. As a result, the streamflow 468 

simulation accuracy gets improved before reaching a turning point, which is observed 469 

when the routing time step reaches 600 s. From that point, the underestimated volume 470 

of overland flow, resulting from the coarsening routing time step, begins to exceed the 471 

overestimated volume of streamflow. 472 

Impacts of watershed sizes on the computational time using the MacCormack 473 

scheme are investigated by applying DHSVM-MacCormack to a much larger 474 

watershed, the UHRB in China. With the same model setup as listed in Table 3, 475 
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simulation results show that the computational time required by 476 

DHSVM-MacCormack were 0.01 hour and 3.35 hour, respectively, in modelling the 477 

Mercer Creek watershed and the UHRB. In contrast, it took the original DHSVM 478 

model 0.03 hour and over two weeks, respectively, for these two watersheds. 479 

Although the required computational time for either DHSVM or 480 

DHSVM-MacCormack appear to be proportional to the watershed size, the advantage 481 

of the MacCormack scheme on the reduction of computational time is more 482 

significant with the larger watershed (i.e., Heihe watershed). In particular, the 483 

computation time required by the original DHSVM model increased by more than 484 

11,200-fold when the watershed size is increased only by about 322 times. But for the 485 

DHSVM-MacCormack model, the increase in the computation time is only about 335 486 

times. Such results indicate that the improvement on the computational efficiency of 487 

overland flow MacCormack routing scheme is significantly more when the 488 

MacCormack scheme is applied to a larger watershed with a constant grid size. 489 

To assess impacts of different modeling grid sizes on the computation time, we 490 

have carried out a series of different simulations with grid sizes being at 30, 45, 60, 90 491 

and 150 m, respectively, using both the original and enhanced DHSVM models with 492 

the Mercer Creek watershed. In these simulations, the computational environment and 493 

model settings were kept the same except for the modeling grid sizes. Figure 7 shows 494 

that the computational time required by the original DHSVM model decreases from 495 

35.5 to 0.03 hours when the grid size increases from 30 to 150 m whereas the 496 

computational time required by DHSVM-MacCormack reduces from 0.2 to 0.01 497 
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hours. This clearly demonstrates that the computational time with the MacCormack 498 

scheme decreases when the grid size increases for a given basin. The reduction is 499 

more obvious for the original DHSVM model than for DHSVM-MacCormack as 500 

expected since the latter is already very effective when the modeling grid size is small 501 

for a given large watershed.  502 

These results illustrate that the computational time of the MacCormack scheme 503 

depend on the size of both the basin and the modeling grid cell. For applications to 504 

larger river basins, the demand for computational time can be compensated by 505 

increasing grid sizes. Thus, selecting an appropriate grid cell size that is as large as 506 

possible while satisfying the accuracy requirement is the key to reduce computational 507 

time when applying MacCormack scheme to a large watershed. From a practice point 508 

of view, one can also use the MacCormack scheme in conjunction with HPC or 509 

parallel and distributed computations (Li et al., 2011; Vivoni et al., 2011) for 510 

conducting the routing for a very large river basin. 511 

 512 

Figure 7. Computational time required by DHSVM (a) and DHSVM-MacCormack (b) 513 

for the Mercer Creek watershed with different grid sizes 514 
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In this study only the semi-MacCormack scheme was implemented in DHSVM 515 

for the overland flow routing. The full version of the MacCormack scheme 516 

(full-MacCormack), however, proved to outperform the semi-MacCormack in terms 517 

of simulation accuracy, although the latter is slightly more computationally efficient, 518 

as presented in Section 3.1. Thus, in a follow-up study, we expect to apply the 519 

full-MacCormack scheme to overland flow routing in PDHMs, despite of the 520 

aforementioned theoretical and practical challenges. In the version of 3.1.2, flow 521 

paths are determined by the D4 algorithm, which complicates the integration of the 522 

full-MacCormack algorithm into DHSVM, because each computational grid may 523 

have multiple inflows and outflows. However, the coupling of the full-MacCormack 524 

scheme for watershed routing may become more plausible for other PHDMs with the 525 

D8 algorithm determining flow directions, since each computational grid has only one 526 

outflow in spite of possible multiple inflows.  527 

4 Conclusions 528 

This study applied, for the first time, the MacCormack numerical scheme to overland 529 

flow routing in DHSVM, a representative high-spatial resolution, process-based, 530 

distributed hydrological model. The MacCormack scheme proved to be applicable 531 

and efficient when coupled with DHSVM. After verifying against the analytical 532 

solutions for two synthetic overland flow cases with uniform rainfall, the 533 

semi-MacCormack algorithm was then implemented into DHSVM to solve the 534 

kinematic equations for overland flow routing. The performance and practicability of 535 
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the enhanced DHSVM model (i.e., DHSVM-MacCormack) were assessed by 536 

performing two groups of modeling experiments (i.e., Exp I and Exp II) over the 537 

Mercer Creek watershed. 538 

The analytical verification indicated that both the semi and full versions of the 539 

MacCormack schemes (i.e., semi-MacCormack and full-MacCormack) exhibit robust 540 

numerical stability even with large time steps that violates the CFL stability condition. 541 

They were demonstrated to be significantly more computationally efficient than the 542 

explicit linear scheme. Additionally, despite more time-consuming when a same time 543 

step is employed, the full-MacCormack scheme slightly outperformed the 544 

semi-version in terms of simulation precision, especially for the falling limb of the 545 

hydrographs.  546 

The two groups of modelling experiments in the Mercer Creek watershed show 547 

that DHSVM-MacCormack can considerably improve the computational efficiency 548 

while preserving the same simulation accuracy of the original DHSVM model. With 549 

the same computational environment and model settings, DHSVM-MacCormack can 550 

reduce the CPU time from about one day and a half, required by the original DHSVM 551 

model, to several dozen minutes for a simulation period of three months (January 1, 552 

2012 to March 31, 2012), without any noticeable sacrifice of the accuracy.  553 

In addition, our results show that the reduction of computational time is 554 

significantly more with the larger watershed (i.e., Heihe watershed vs. Mercer Creek 555 

watershed) using DHSVM-MacCormack than DHSVM, although the required 556 

computational time for both DHSVM and DHSVM-MacCormack appear to be 557 
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proportional to the watershed size. Furthermore, our results show that the 558 

computational efficiency of applying the MacCormack scheme depend both on the 559 

sizes of the watershed and the grid cell. Thus, selecting an appropriate grid cell size 560 

that is as large as possible while satisfying the accuracy requirement can be a key to 561 

have a maximum reduction of the computational time. The MacCormack scheme 562 

shows promise for applications to watershed routing in high spatial resolution 563 

PDHMs in light of its outstanding computational efficiency. Future work will focus on 564 

implementing the full-MacCormack scheme to PDHM with the D8 algorithm 565 

determining flow directions.  566 
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