How to cite: Chen Y, Nan Z, Cao Z, Ou M, Feng K. A stepwise framework for interpolating land surface temperature
under cloudy conditions based on solar-cloud-satellite geometry. ISPRS Journal of Photogrammetry and Remote
Sensing. 2023, 197: 292-308. doi:10.1016/j.isprsjprs.2023.02.004.

[u—

10

11

12

13

14

15

16

17

18

19

20

21

22

A stepwise framework for interpolating land surface temperature
under cloudy conditions based on the solar-cloud-satellite geometry
Yuhong Chen', Zhuotong Nan'?*, Zetao Cao', Minyue Ou', Keting Feng>*

1 Key Laboratory of Ministry of Education on Virtual Geographic Environment, Nanjing Normal
University, Nanjing, 210023, China
2 Jiangsu Center for Collaborative Innovation in Geographical Information Resource
Development and Application, Nanjing, 210023, China
3 Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou, 730000, China
4 National Cryosphere Desert Data Center, Lanzhou, 730000, China

Corresponding author: Zhuotong Nan, nanzt@njnu.edu.cn

Abstract: Thermal infrared land surface temperature (LST) data from satellites often contain
extensive missing values due to high cloudiness degree, which severely hinders their use in
applications. Despite the many methods developed, common methods, such as fusion with
microwave or reanalysis data and the surface energy budget approach, still remain subject to
important limitations and uncertainties, such as dependency on coarse resolution data and difficulty
in interpolation for large-scale missing LST data. In this study, we proposed a stepwise framework
for estimating missing cloudy-sky LST values of Moderate Resolution Imaging Spectroradiometer
(MODIS) from informative samples owing to the solar-cloud-satellite geometry (SCSG) effect, by
which satellite imagery records the cloudy-sky LST values of a portion of pixels. We first estimated

the clear-sky LST equivalents for all cloud-affected pixels via a similarity-based approach and then
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determined unknown LSTs for cloudy pixels by training a machine-learning model on cloudy-sky
LST values observed owing to the SCSG effect. We demonstrated the utility of this approach by
using MODIS/Aqua daytime LST data over Qinghai-Tibet Plateau (QTP) and validated the
interpolation results against representative in-situ LST observations and two recently published all-
weather LST datasets. When compared to the corresponding in-sifu measurements, the interpolated
cloudy-sky LST values showed satisfactory accuracy with a mean absolute error (MAE) value of
3.99 °C and a coefficient of determination (R?) value of 0.74, while the MODIS/Aqua clear-sky LST
values led to an MAE value of 2.66 °C and an R? value of 0.86. Compared to the two all-weather
LST datasets, results of this study showed the highest accuracy over the data-gap-filled regions in
terms of all quantitative performance metrics, more natural transition textures, and better
representation of seasonal characteristics. The proposed framework has the advantage of relying on
the MODIS family data and handling extensive missing data as well as triggers opportunities to
leverage the SCSG effect to produce high-quality all-weather LST data.
Key words: land surface temperature (LST); solar-cloud-satellite geometry (SCSG); clear-sky LST
equivalent; stepwise interpolation framework; cloud-contaminated pixels.
1. Introduction

Land surface temperature (LST) is an important variable related to surface energy and water
balance at the local-to-global scales and is controlled by a complex interplay of topography, incident
radiation, atmospheric processes, hydrology, and land use and land cover (Anderson et al., 2008;
Brunsell and Gillies 2003; Kustas and Anderson 2009; Li et al., 2013). Globally, satellite remote-
sensing data continuously provide spatiotemporal coverage at the fine-to-coarse resolutions for LST

(Tomlinson et al., 2011). Since satellite LST data can only be effectively retrieved from thermal
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infrared (TIR) measurements under clear sky conditions, large areas of data gaps may occur due to

missing values when the surface is obscured by clouds. Cloudy skies account for more than half of

day-to-day weather conditions across the world (Hagihara et al., 2011). There is a growing demand

for the development of effective cloud-removal algorithms for satellite LST products as the scarcity

of high-quality all-weather LST data has severely limited hydrometeorological studies and the

application of process-based models on the regional-to-global scale.

Many algorithms have been developed to recover missing LST values caused by cloud cover,

such as microwave-based methods (Shwetha and Kumar 2015; Tang et al., 2022; Xu and Cheng

2021), surface energy balance (SEB)-based methods (Jin 2000; Martins et al., 2019; Yang et al.,

2019; Yu et al., 2019), and data fusion approaches (Long et al., 2020; Zhang et al., 2021; Zhao and

Duan 2020). Some studies have attempted to interpolate cloud-free LST values from the

neighborhood pixels with similar environmental characteristics to missing cloudy-sky ones (Chen

etal., 2021; Collins et al., 2020; Li et al., 2018; Yu et al., 2015). However, the interpolation of these

cloud-free LST values can lead to clear-sky biases with respect to actual cloudy-sky conditions

(Collins et al., 2020; Ermida et al., 2019). Advantageous compared to infrared signals, microwave

signals penetrate clouds and are less affected by atmospheric absorption while acquiring LST under

all-sky conditions (Duan et al., 2020; Palaniyandi et al., 2021). However, microwave data suffer

from a coarse spatial resolution and are very sensitive to surface conditions, such as soil moisture,

surface roughness, and vegetation cover, thus resulting in large uncertainties in LST data (Duan et

al., 2020; Prigent et al., 2016). SEB-based methods leverage the surface energy balance equation to

calculate the difference in surface radiation flux between clear and cloudy sky conditions and then

estimate missing LST values by accounting for the differences (Jia et al., 2021; Lu et al., 2011; Yu
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et al., 2019). The SEB-based methods require ancillary data (e.g., wind speed, air temperature, and

energy fluxes), the accuracy of which greatly affects the interpolation performance (Martins et al.,

2019). Recently, some studies have successfully merged remotely sensed TIR LST data with

reanalysis data to generate all-weather LST data (Dumitrescu et al., 2020; Long et al., 2020; Zhang

et al.,, 2021). In general, LST data products fused with reanalysis data are subject to large

uncertainties as reanalysis data have a coarser spatial resolution than do TIR LST data as well as

low accuracy (Mo et al., 2021). This is in particular true for remote areas with complex terrains and

sparsely distributed in-situ observation sites, which in turn adversely affect the final accuracy of the

fused products.

In-situ observations provide the most reliable cloudy-sky LST values, thus playing a pivotal

role in the validation of interpolated cloudy-sky LST data as well as the development of plausible

methods to recover missing LST values. Tan et al. (2021) used in-situ LST data to calculate the

cloudiness-induced biases in satellite LST before applying them to the recovery of cloudy-sky LST.

There exist various difficulties in practice, such as an insufficient number of measurement sites and

the issue of a spatial scale mismatch between in-situ observations and satellite observations (Coll et

al., 2005; Li et al., 2013; Wan 2008). For example, for I-km LST data from the Moderate Resolution

Imaging Spectroradiometer (MODIS), suitable in-sifu observation sites should be both at least 5 km

x5 km in size and homogeneous (Wan 2008). Since few sites can meet these requirements, the use

of in-situ observations to retrieve cloud-affected LST values remains limited.

Owing to the solar-cloud-satellite geometry (SCSG) effect, there is an alternative way to

compensate for the apparent weaknesses of in-situ observations. Since the sun and satellites have

specific illumination and observation angles with respect to the ground, cloudy regions identified
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by satellites do not exactly match the areas where clouds actually obstruct solar radiation. This effect
is referred to as the solar-cloud-satellite geometry effect (Wang et al., 2017). Therefore, some
regions where solar radiation is shadowed by clouds can be directly observed by satellites (Baraldi
and Tiede 2018; Wang et al., 2017), through which the LST values of cloudy pixels can be known.
The cloudy LST values interpolated via the satellite retrieval algorithm may have biases compared
to the actual values due to the use of clear-sky parameters. Cloudy pixels with known LST values
owing to the SCSG effect could be useful as they can provide many samples with cloud effects at
the same resolution.

In this study, we proposed a stepwise framework to estimate missing LST values based on
cloudy pixels with known LST values owing to the SCSG effect. Based on observation geometry,
an LST image can be partitioned into the following four regions: two clear-sky regions and two
cloudy-sky regions, with each containing a region with missing LST values (Wang et al., 2019).
First, clear-sky LST equivalents were estimated for all cloud-affected pixels via a similarity-based
approach (Chen et al., 2021). Finally, the missing cloudy-sky LST values were estimated by training
a machine-learning model on cloudy-sky pixels with known LST values and on clear-sky
equivalents already prepared. This framework is flexible enough to accommodate any existing clear-
sky interpolation approach in the first step (Chen et al., 2021; Metz et al., 2014; Neteler 2010; Yu
et al., 2015) as well as suitable machine-learning algorithms in the final step.

2. Process of the framework

2.1. Overall framework of the SCSG-based approach

The satellite and sun have specific illumination and observation angles with respect to the
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ground. When a surface is covered by clouds, a special observation geometry known as the SCSG

forms (Wang et al., 2019). Based on the SCSG effect (Wang et al., 2019), each MODIS LST image

was partitioned into four SCSG regions (A, B, C, and D) based on the cloud-top height and

sun/satellite illumination/view angles provided by the MODIS data family (see Section 2.2).

Regions A and B were under clear skies, whereas regions C and D were under cloudy skies. The

LST values were known in regions A and D but unknown in B and C, which were to be predicted

via interpolation. Cloudy region D with known LST values was of great significance for providing

samples to recover unknown LST values under cloudy skies.

The proposed interpolation framework leveraged the SCSG effect to interpolate for missing

LST values in the MODIS LST products. Fig. 1 illustrates the general workflow of this study,

consisting of four steps. First, MODIS LST images were partitioned into the four SCSG regions

(Wang et al., 2017; Wang et al., 2019) (Fig. 1a). Though known, the LST values in cloudy region

D may be biased due to the use of clear-sky parameters in the LST inversion algorithm. This study

relied on in-situ observations at representative sites in order to reduce LST biases in region D.

Second, a clear-sky interpolation method with the advantage of effectively handling large data gaps

(Chen et al., 2021) was employed to estimate the clear-sky LST equivalents for every pixel in

regions B, C, and D (Fig. 1b). The clear-sky LST equivalents in region B well approximated the

true clear-sky LST values in this region, whereas the equivalents in regions C and D were needed

to recover the missing cloudy LST values in region C.

Third, the LST values in region C were estimated (Fig. 1¢). This was carried out under the

assumptions that there existed pixels in region D with high similarity to each missing cloudy-sky

pixel in region C in order to determine cloud effects on the LST as well as that both shared the same
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prediction model representing the cloudy-sky LST value as a function of environmental factors and

clear-sky LST equivalent. In practical applications, this approach first spatially divides the pixels in

region C into many clusters based on environmental predictors to boost computational efficiency.

Second, a machine-learning model, multivariate adaptive regression splines (MARS) in the present

study, is trained for each cluster with the region D pixels that were identified as similar to the cluster

centroid, for which clear-sky LST equivalents, cloudy-sky corrected LST values, and environmental

predictors are readily known. Finally, these prediction models are applied on a cluster-by-cluster

basis to the region C pixels in order to determine the missing cloud-sky LST values, provided that

the values of environmental predictors are available.

After these three steps are completed, an all-weather LST image is generated. In the last step

(Fig. 1d), this study also tested the accuracy and precision of the generated all-weather LST images

based on both visual inspection and quantitative performance metrics. To better describe the process

involved, the following subsections explain the image partitioning based on the SCSG effect in

Section 2.2; the bias correction of cloudy-sky LST values in region D in Section 2.3; the estimation

of clear-sky equivalents in regions B, C, and D in Section 2.4; and the recovery of missing cloudy-

sky LST values in region C in Section 2.5.
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Fig. 1 The workflow of interpolating missing values of satellite land surface temperature (LST) based on

the solar-cloud-satellite geometry (SCSG) effect. (a) Partitioning of the Moderate Resolution Imaging

Spectroradiometer (MODIS) LST image based on the SCSG effect. Region A was under clear sky with

known LST values. Regions B and C had missing LST pixels; region B was under clear sky, whereas

region C was under cloudy sky. Region D was under cloudy sky with known LST values. Due to the use

of the clear-sky parameter in the LST inversion algorithm, observed LST values in region D were most

likely to be biased unless corrected by in-situ observations at representative sites. (b) Implementation of
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a clear-sky LST interpolation method following Chen et al. (2021) for pixels in regions B, C, and D. (c)
Recovery of missing LST values in region C via multivariate adaptive regression splines (MARS) trained
on the region D pixels with bias-removed cloudy-sky LST values. An all-weather LST image was
obtained by assembling all the processed SCSG regions. (d) Evaluation of the all-weather LST image via

visual inspection and quantitative performance metrics.

2.2. Image partitioning based on the SCSG effect

Fig. 2 illustrates the concept of the SCSG effect. Based on this effect, MODIS LST images
were partitioned into the following four regions: region A was clear-sky with valid satellite LST
observations; region B was clear-sky with no known LST; region C was cloud-obscured with no
known LST; and region D was cloud-obscured with known LST owing to the visible viewing angle
from the satellite to the surface. When the satellite viewing zenith/azimuth angles, solar
zenith/azimuth angles, and cloud-top height are known, the cloud shadow positions on the ground

can be calculated from the observation geometry (Fig. 2) as follows (Wang et al., 2019):

{Xpm = Xmap + H tan 6, sin ¢, )

Ypro = Ymap + Htan 8, cos ¢,

{Xshw = Xpro — H tan 6 sin ¢y @)
Yshw = Ypro — H tan 05 cos ¢,

where (Xinap, Ymap) s the position of the cloud in a satellite LST image and is probably a pseudo

position within regions B or C; (Xy, Ypr0) is the orthographic projection of cloud onto the surface;

and (Xymw, Ysnw) 1s the actual cloud shadow region where clouds obstructed solar radiation and

formed regions C and D; H is the cloud-top height above the surface, determined by subtracting the

surface altitude from the cloud-top height provided by the MODIS Level-2 cloud product

(MOD/MYDO06 L2); 6, and ¢, are the satellites observing the zenith and azimuth angles,
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respectively; and 6, and ¢, are the solar zenith and azimuth angles, respectively.
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Fig. 2 Illustration of the SCSG effect shown on a satellite LST image, as modified from Wang et al.

(2019). Region A was under clear sky. Regions B and C were obscured by clouds from the satellite view,

shown in an LST image as missing pixels (Xiap, Ymap). Regions C and D were the actual shadow regions

(Xsiw, Ysmw), but region D was visible from the satellite and had known LST values. Please refer to Eqs.

(1) and (2) for the abbreviations and symbols used. The inset shows the shadow gaps on the LST image

resulting from the large difference in cloud-top height between nearby cloud-covered pixels.

The steps to partition a MODIS LST image into the SCSG regions are presented below:

1) Smoothing pixelated data of cloud-top height

A giant cloud body is not homogeneous everywhere and varies in cloud-top height. The

MODIS instrument records spatially continuous cloud-top heights with many numerically discrete

pixel-by-pixel heights. In this case, if the height difference between two adjacent cloudy pixels is

10
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large, shadow gaps can appear on the surface according to Egs. (1) and (2) (see inset in Fig. 2), when

sunlight illuminates the cloud top at certain zenith angles. Shadow gaps are unreasonable for

intrinsically continuous cloud bodies (Wang et al., 2019). To address this issue, the MODIS cloud-

top height data were smoothed by using a mean filter with a 15 x 15 window. Although Wang et al.

(2019) suggested a 7 x 7 window for smoothing cloud-top height data over Qinghai-Tibet Plateau

(QTP), after many trials, a window of 15 x 15 was preferred in this study, because it allowed for

more effective reduction of data gaps without a significant degradation in accuracy due to the wider

window.

2)  Partitioning an LST image into SCSG regions

Based on the cloud positions detected by the satellite (Xinap, Ymep) and the sun/satellite

illumination/view angles (¢, @s, 6,, 65), the orthographic cloud projection onto the surface (X0, Ypro)

can be estimated from Eq. (1). The cloud shadow positions (X, Yenw), where solar radiation is

obstructed by clouds, can be calculated from Eq. (2). All shadow pixels whose LSTs were observed

were classified into region D, otherwise into region C. Region A consisted of pixels with known

LST, except for those already in region D. The remaining pixels whose LSTs were unknown, except

for those already in region C, constituted region B; but some of whose cloud-top heights recorded

by the satellite were lower than their altitudes were reassigned to region C.

3)  Post-processing to eliminate anomalies

As shown in Fig. 3 there were some anomalies in the resulting SCSG images, such as

MODIS/Aqua daytime LST image on day 18 of 2003 over a subregion of QTP. In this study, the

three main types of anomalies (illustrated by R1, R2, and R3 in Fig. 3a) were removed by post-

processing the resulting SCSG images, as described below.
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The anomalies shown in subregion R1 (Fig. 3a) were related to the process of smoothing the

cloud-top height data, in particular, over a large cloudy area, thus resulting in misclassification in

the SCSG images. These anomalies appeared to be a few region B pixels surrounded by region C

pixels. To resolve this issue, we applied a 5 x 5 moving window to each region B pixel and

reclassified the pixel based on a majority rule within the window. The size of the moving window

was determined via visual inspection to minimize the occurrence of such anomalies in the resulting

image, as shown in subregion R1 in Fig. 3b.

The second type of anomaly was caused by a discontinuity in viewing/solar angle data, where

two MODIS scans overlapped (e.g., subregion R2 in Fig. 3a). The overlaps can be identified by

abrupt changes between adjacent pixels in the MODIS angular image. Therefore, we subtracted the

angular image from a new image created by shifting the angular image by one column to the right

and applied a threshold of 100° to the resulting difference image to detect the affected pixels. Then,

pixels near the affected pixels were processed by using a moving window with a majority-voting

scheme.

Subregion R3 in Fig. 3a shows anomalies due to small data gaps in the MODIS instrumental

coverage from the equator to 50° latitude as well as coverage overlapping from 50° latitude

poleward (Masuoka et al., 1998). Since these gaps did not contain adequate information to

accurately classify the SCSG region, we roughly classified them as region C if they were acquired

in spring and summer, when clouds are more likely to occur in the northern hemisphere, otherwise

as region B (Mao et al., 2019).

12
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(a) Original SCSG image (b) SCSG image after post-processing
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Fig. 3 An example of SCSG partition based on the 18" daytime MODIS/Aqua LST image in 2003 over
a subregion of Qinghai-Tibet Plateau (QTP) (a) before and (b) after anomaly removal. The SCSG
regions (A-D) are shown in different colors, and three subregions (R1, R2, and R3) with typical

anomaly sources are marked by rectangles.

2.3. Bias correction of cloudy-sky LST values in region D

SCSG region D was in the shadow of clouds but could be viewed from the satellite owing to
the differences between the solar illumination angles and satellite observation angles. The known
LST values in region D served as independent cloud-affected observations to be used to formulate
a relationship to account for cloud-induced biases so that missing LST values in region C due to
cloud cover could be determined. The LST values of region D pixels could also be biased, because
in the MODIS LST inversion algorithm, the band emissivities retrieved on previous days were used
as the initial emissivity values for new retrievals. In the presence of clouds, the retrieved TIR band
emissivity values may be lower than normal values under cloudy conditions (Wan 2008). Therefore,
a procedure at the fundamental level of the LST inversion algorithm is needed to correct for the LST

biases in region D pixels and needs to be tested prior to becoming qualified for use in subsequent
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steps. However, in this study, this task was accomplished based on in-situ LST observations at
ground sites representative of LST variations in the vicinity and performed independently of the
proposed approach.

For a model to be built to treat biases for region D pixels, valid data points were located from
the LST time-series observations at representative ground sites. The SCSG regions were created for
all MODIS LST images spanning multiple years. For each MODIS cell with a representative site,
the timing at which the cell was classified as region D was determined and used as the basis for
finding the corresponding in-sifu data points. It was likely that no exact temporal match existed
between the satellite and in-sifu observations as the former was instantaneous, whereas the latter
was often measured hourly. We linearly interpolated the in-situ data at the satellite overpass time
from the two closest time points. For example, the in-situ data points between 1:00 and 2:00 pm
local time were linearly interpolated to provide the in-situ LST for a satellite acquisition time of
approximately 1:30 pm for MODIS/Aqua. It should be noted that the fraction of usable data points
for QTP may not be large due to the small size of region D and the limited number of representative
QTP sites. Based on the valid data pairs comprising the SCSG region-D LST and simultaneous in-
situ cloudy-sky LST, empirical mathematical models were constructed to remove systematic biases
from the region D LST values. In the case study of QTP, the linear model was found to be

satisfactory for this purpose (see Section 4.3).

2.4. Estimation of clear-sky LST equivalents

For SCSG regions B, C, and D, the clear-sky LST equivalents were interpolated. This study

adopted the approach developed by Chen et al. (2021), based on the concept of similarity, under the

14
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assumption that each interpolated LST pixel had spatially similar pixels in terms of temperature

change over time. This approach depended on the reference LST images that were not only

temporally adjacent to the image being interpolated, but also had a matching overpass time and

spatial coverage. For each missing pixel in the interpolated image, temporally proximate images,

such as those within a time window (e.g., 15 d) centered on the interpolated image, were considered

the reference images only if the images had a valid LST value at the interpolated location and

contained a relatively high proportion of valid pixels. Consequently, the reference images were

variable for each interpolated pixel.

With each reference image pertinent to the interpolated pixel, the pixel value was estimated

from the empirical orthogonal function (DINEOF) method (Alvera-Azcarate et al., 2005; Beckers

and Rixen 2003). This method relied on the LST values of similar pixels determined from both the

interpolated image and each associated reference image based on a high consensus on a number of

environmental predictors, such as normalized difference vegetation index (NDVI), digital elevation

model (DEM), slope, aspect, and clear-sky direct shortwave solar radiation. Multiple LST estimates

could be made for each interpolated pixel because a given interpolated pixel could be associated

with multiple reference images. A Bayesian approach (Kumar et al., 2007) was then applied to merge

these initial estimates and obtain the best estimate of LST for the interpolated pixel. It should be

noted that it was likely that some pixels had no qualified reference images in which case these pixels

were assigned null. According to our experiments, the fraction of pixels with null values for each

image after the interpolation was small. Some conventional geostatistical interpolation approaches

can be employed to effectively fill the remaining missing pixels, given the small number, and

produce a non-missing LST image.
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This approach was tested with purposively generated large data gaps in the MODIS LST
images of QTP and was used to compare the interpolation results to the actual data. As a result, it
was found to outperform the conventional approaches in terms of interpolating for large areas of
missing data. As this approach used only clear-sky LST values, the interpolation results did not

include cloud effects.

2.5. Recovery of missing cloudy-sky LST values in region C

The pixels in region D with bias-corrected cloudy-sky LST values provided important
information about cloud effects on LST in order to recover missing LST values in region C due to
cloudiness. Although the SCSG effect is only based on cloud shape, the LST values in region D
were synthesized from all cloud effects, such as cloud shape, thickness, and composition, and were
then strengthened via the bias correction process based on the in-situ observations of cloudy-sky
LST. In the recovery of missing cloudy-sky LST values in region C, it was assumed that, for each
interpolated pixel in region C, there were spatially similar pixels in region D with respect to the
environmental predictors and clear-sky LST equivalents. The interpolated pixels and their similar
pixels had similar cloud conditions and shared a statistical model representing the cloudy-sky LST
value as a function of the environmental predictors. Thus, for each interpolated pixel, a statistical
model could be identified from similar pixels. In our implementation, interpolation was conducted
on the clusters instead of pixels for computational efficiency. The steps involved spatially clustering
the pixels in region C, identifying pixels in region D with high similarity to the cluster centroid,
training a specific LST-prediction model for each cluster, and then applying the model to estimate

unknown LSTs of region C pixels that were part of that cluster. The same steps were iterated for all
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clusters in region C.

To perform a cluster analysis between pixels and identify similar pixels, the environmental

predictors should be determined. LST is the result of many combined impacts and is closely related

to a number of environmental factors, such as land-use/cover change, NDVI, soil moisture, elevation,

slope, aspect, and incident solar radiation (Deng et al., 2018; Tian et al., 2012; Van De Kerchove et

al., 2013). Incident solar radiation partially reflects cloud characteristics (Kasten and Czeplak 1980)

and helps to find pixels under similar cloud conditions. In this study, the attributes specified for

cluster analysis were clear-sky LST equivalents; topographic factors of elevation, aspect, and slope;

surface condition factors of NDVI and albedo; and solar radiation factors of downward shortwave

radiation (DSR) and net surface shortwave radiation (NSSR). These data were obtained from

MODIS, DEM, and DEM-derived datasets. The k-means method was applied with 1000 clusters.

The centroids of all the clusters were identified. The same set of attributes for cluster analysis was

used to define similar pixels in region D. A simple Euclidean distance equation was used as the

similarity function. For each cluster centroid in region C, the first 1000 pixels with the highest

similarities formed a similar group for the cluster centroid.

The MARS model was used to build a prediction model for cloudy-sky LST, given its

advantage in handling nonlinear dependencies and high-dimensional data. The MARS algorithm

takes the form of an expansion in the product spline basis functions, where the number of basis

functions and the parameters associated with each function are automatically determined by the

training data. This procedure is motivated by recursive partitioning and shares the ability to capture

high-order interactions. This model has a forward process for generating a set of basis functions

over the domain of interest and a backward process for preventing overfitting. To estimate cloudy
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LST, one MARS model was trained for each cluster in region C as a function of the environmental
predictors and the clear-sky LST equivalent (Eq. (3)). The well-trained MARS models were then
applied to the pixels in region C on a cluster-by-cluster basis to estimate their cloudy-sky LSTs.

LSTeq = fuars(SP, LSTerr) 3)
where LST.4 is the cloudy-sky LST value; LST,; is the clear-sky LST equivalent; and S” represents
the environmental predictors of elevation, aspect, slope, NDVI, albedo, DSR, and NSSR.

3. Study area and performance evaluation

3.1. Study area and data

The proposed approach was tested on the study area of Qinghai-Tibet Plateau (Fig. 4). The
plateau is bounded by 26°00'—39°47'N and 73°19'-104°47'E, with an average elevation of more than
4000 m above sea level (a.s.l.) and an area of approximately 2.6 million km?. Due to the combined
effect of westerlies, the East Asia monsoon, and the Tibetan Plateau monsoon, there were significant
cloud-related data gaps in the MODIS LST data products, typically extending more than half a year
(Yuetal., 2015). The experimental satellite daytime LST data were obtained from the MODIS Land
Surface Temperature/Emissivity Daily L3 Global 1 km dataset (MYD11A1) onboard the Aqua
satellite with equatorial overpasses at approximately 1:30 pm in ascending orbit and 1:30 am in
descending orbit. To align with the in-situ measurements used in this study, data for 2002—2004 and

2009-2010 were selected.
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Fig. 4 Map showing the topography of Qinghai-Tibet Plateau and the locations of candidate sites where

in-situ LST observations were available. Representative sites were determined from the candidate sites

with reference to their representativeness for the 1-km MODIS LST pixels that contained the in-situ

measurement sites.

The two MODIS products of the Geolocation Fields 5-Min L1A Swath 1 km dataset (MYDO03),

which provides solar and satellite observation angles, and the Clouds 5-Min L2 Swath 1 km dataset

(MYDO06_L2), which provides cloud-top heights, were used to support the SCSG partitioning. The

data used to estimate clear-sky LST equivalents were the Vegetation Indices 16-Day L3 Global 1

km dataset (MYD13A2), the Shuttle Radar Topography Mission (SRTM) 90 m DEM, and DEM-

derived data, such as slope and aspect. The clear-sky direct shortwave solar radiation data were

estimated from the incident angle as a function of the time of year, latitude, altitude, slope, and
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aspect, as were diffuse and reflective radiation (Kumar et al., 1997).

The environmental predictors supporting cloudy-sky LST retrieval were extracted from the

following MODIS data family: MYD13A2 NDVI, the Surface Radiation Daily/3-Hour L3 Global

1 km dataset (MCD18A1), Global Land Surface Satellite (GLASS) albedo data (Liang et al., 2013),

and SRTM providing topographic factors. MCD18A1 provides a 1-km gridded MODIS Terra/Aqua

combined DSR at two temporal resolutions (instantaneous and 3-h). Because the instantaneous DSR

data at the time of the MODIS overpass contain significant coverage gaps due to cloud

contamination, we used the 3-h DSR data and interpolated the value at the overpass time from the

two closest time points. GLASS albedo data were also used (Liang et al., 2013), because they offer

gap-free, high-quality albedo data for this study. The NSSR, defined as NSSR = DSR x (1-albedo),

was calculated based on MCD18A1 and the GLASS albedo data. The 90-m SRTM DEM data were

up-scaled by computing an 11 x 11 aggregate mean before bilinear resampling to align with the 1-

km MODIS pixel centers.

Two all-weather LST datasets publicly available from the National Tibetan Plateau Data Center

were used to cross-validate the interpolated cloudy-sky results of this study. One was a fused 1-km

LST dataset from the Advanced Microwave Scanning Radiometer 2 (AMSR2) and MODIS/Aqua

daytime/nighttime LST (MYD11A1) data (hereafter referred to as PTM LST) spanning 2000-2020

using a cumulative distribution function-matching approach and a multiresolution Kalman-filtering

approach (Xu and Cheng 2021). The other was a merged 1-km LST dataset generated by merging

the MYD11A1/LST daytime/nighttime product and GLDAS LST data (hereafter referred to as R-TM

LST) spanning 2000-2020 based on a temporal component-decomposition model, which

decomposed cloudy LST time series into the three components of an annual cycle, a diurnal change,
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and cloud effect, with the annual and diurnal components being estimated from clear-sky LSTs and

with the cloud effect component from reanalysis data (Zhang et al., 2021). A subset of 2002-2004

and 2009-2010 was extracted from the two datasets for a comparison to our interpolated results.

Although many datasets were required as the inputs to the proposed approach, they could be

acquired from the same MODIS product family (Table 1). The only exception was the SRTM data,

which were assumed to be constant over the study period. Based on the literature review, the

accuracies of all the satellite data collected for QTP are listed in Table 1. Because the MYDO03

product only provides satellite viewing angles and solar illumination angles, no accuracy was

provided. The same MODIS family was used to collect data in order to maximize data availability

and minimize uncertainties associated with spatiotemporal scale mismatches.

Table 1 Datasets as the inputs to the proposed approach and their reported accuracies over QTP based

on literature review. Other variables required were derived from these datasets. The Shuttle Radar

Topography Mission (SRTM) data were up-scaled to 1 km to match the other data. RMSE: root mean

square error; MAE: mean absolute error; and STD: standard deviation.

Product Spatial/temporal
Variable(s) provided Accuracy over QTP
code resolutions
MYDI11A1 1 km/daily Daytime LST 3.34-5.58 °C in RMSE (Duan
etal., 2019)
View time /
MYDO3 1 km/daily View zenith/azimuth angle /
Solar zenith/azimuth angle /
MYDO06 L2 1 km/5 min Cloud-top height 0.87-1.58 km in MAE (Yang

etal., 2021)
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MYD13A2 1km/16d NDVI 0.042-0.086 in RMSE (Sajadi

etal., 2021)
MCD18A1 1km/3 h Downward shortwave 134.8-172.6 W/m? in RMSE
radiation (Wang et al., 2021)
GLASS 1 km/8 d Albedo Black-sky: 0.055-0.092;
Albedo white-sky: 0.052-0.088

(RMSE) (An et al., 2020)
SRTM 90 m Elevation 4.58+26.01 min STD (Huang

etal., 2011)

3.2. Representative sites and performance of clear-sky MODIS LST for QTP

Only a few sites in QTP provided in-situ LST observations. We collected in-situ observations
from a total of 14 candidate sites (Fig. 4), mainly from the following two sources: the Coordinated
Energy and Water Cycle Observations Project (CEOP) for eight sites with a data period of 2002—
2004 (Ma et al., 2006) and the Institute of Tibetan Plateau Research (ITP) of the Chinese
Academy of Science for six sites for hourly data as of 2005 (Ma et al., 2020). Only observations
for the period of 2009-2010 at the ITP sites were used since one of the ITP sites became
operational in 2009.

Unlike the CEOP dataset, which provides ready-to-use LST data, the ITP dataset contained
only measurements of outgoing and incoming shortwave and longwave radiation fluxes, which were

used to derive LST from the Boltzmann’s law thus:

(4)

LST, = [w]m

O&p

where LSTy is the in-situ LST; R, is the upwelling broadband hemispherical radiance (W/m?); Ry is
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the downwelling broadband hemispherical radiance (W/m?); ¢ is the Stefan-Boltzmann constant
(5.67x10 W/m?/K*); and &5 is the broadband emissivity, which can be estimated from the Advanced
Space Thermal Emission and Reflection Radiometer (ASTER) Terra emissivity product (AST 08
v003) via a spectral-to-broadband linear regression equation as follows (Cheng et al., 2013):

& = 0.197 + 0.025&1y + 0.057&14 + 0.237¢&;, + 0.33313 + 0.146¢, %)
where ¢;0-£14 are the narrowband surface emissivities of ASTER bands 10-14, respectively.

In this study, we identified representative sites from the 14 candidate sites from two
perspectives. First, we measured the spatial homogeneity of the sites from the spatial standard
deviation (STD) values of LSTs based on ASTER LST data (AST 05 v003) at a spatial resolution
of 90 m, as described by Duan et al. (2019). More specifically, a single MODIS LST pixel covering
11 x 11 ASTER pixels and the LST observations on the ASTER pixels were used to calculate the
spatial STD values for the ground site of interest. A multi-year average of the spatial STD values
can indicate site representativeness within the corresponding MODIS cell in terms of spatial
homogeneity. Second, we measured site representativeness based on the bias metrics between the
in-situ clear-sky LST measurements and the corresponding MODIS LSTs in SCSG region A.

In our quantitative evaluation, the following performance metrics were used: bias (BIAS),
mean absolute error (MAE), root mean square error (RMSE), unbiased RMSE (ubRMSE), and
coefficient of determination (R?). We used BIAS for average error and MAE for average absolute
error. Unlike BIAS and MAE, RMSE quantifies the errors with more weights for large deviations,
whereas ubRMSE excludes systematic errors from RMSE. R? measures the agreement between the
in-situ measurements and interpolation results, calculated as the proportion of the variation in the

response variable that is predictable from the explanatory variables. Higher values of R? and lower
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values of BIAS, MAE, RMSE, and ubRMSE indicate better performance. A negative R? value
indicates that the predictions are worse than a constant function that always predicts the mean of the
data.

Fig. 5 shows the representativeness of the sites in terms of the spatial homogeneity of LST, as
measured by the spatial STD values of LSTs over the 1-km MODIS pixels containing the sites based
on the ASTER LST observations for 2002-2010. Among the 14 candidate sites, the CEOP sites,
such as BJ-SAWS?2 (C2), BJ-Tower (C3), and MS3478 (C7) (Fig. 5a), and the ITP sites, such as BJ
(ITP1), QOMS (ITP5), and SETORS (ITP6) (Fig. 5b), showed significant heterogeneity with a high
median or a wide range of the spatial STD values. When the MODIS/Aqua clear-sky daytime LST
observations were compared to the in-situ LST measurements available at the MODIS acquisition
time (Fig. 6), the sites of MS3478-AWS (C7), BJ (ITP1), QOMS (ITPS), and SETORS (ITP6)
showed considerable biases in RMSE, MAE, and BIAS. For these sites, the LST heterogeneity was
also observed in terms of the spatial STD values. However, for some sites, such as Gaize (C6) and
NAMORS (ITP4), identified as relatively homogeneous in terms of the spatial STD values, the
RMSE values between the in-situ LSTs and MODIS LSTs differed by more than 5 °C under clear
skies. While Gaize (C6), BJ (ITP1), NAMORS (ITP4), and SETORS (ITP6) showed a large BIAS
range of -9.62 to -4.14 °C, their ubRMSE values were less than 3.5 °C, indicating that the satellite
clear-sky LST observations at these locations were largely subject to systematic biases.

With the criteria of less than 3.5 °C in the median spatial STD, less than 4.5 °C in RMSE, and
less than 2.5 °C in BIAS between the in-situ LSTs and MODIS clear-sky LSTs, the four CEOP sites
of ANNI-AWS (C1), D105-AWS (C4), D66-AWS (C5), and MS3608-AWS (C8) and the two ITP

sites of MAWORS (ITP2) and NADORS (ITP3) were determined as the representative sites of a 1-
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km MODIS pixel for the LST variations (Table 2).

Prior to evaluating the performance of the interpolated cloudy-sky results, we tested the
performance of MODIS/Aqua clear-sky daytime LST data at the six representative QTP sites in
order to obtain the baseline accuracy for the proposed approach. The overall performance of the
MODIS/Aqua clear-sky daytime LST observations was excellent for QTP, with a low MAE value
of 2.66 °C, a low systematic BIAS value of 0.06 °C, and a high R? value of 0.86 (n = 1078).
Typically, MODIS LST data were reported to exhibit relatively low consistency