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12 

Abstract： Thermal infrared land surface temperature (LST) data from satellites often contain 13 

extensive missing values due to high cloudiness degree, which severely hinders their use in 14 

applications. Despite the many methods developed, common methods, such as fusion with 15 

microwave or reanalysis data and the surface energy budget approach, still remain subject to 16 

important limitations and uncertainties, such as dependency on coarse resolution data and difficulty 17 

in interpolation for large-scale missing LST data. In this study, we proposed a stepwise framework 18 

for estimating missing cloudy-sky LST values of Moderate Resolution Imaging Spectroradiometer 19 

(MODIS) from informative samples owing to the solar-cloud-satellite geometry (SCSG) effect, by 20 

which satellite imagery records the cloudy-sky LST values of a portion of pixels. We first estimated 21 

the clear-sky LST equivalents for all cloud-affected pixels via a similarity-based approach and then 22 
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determined unknown LSTs for cloudy pixels by training a machine-learning model on cloudy-sky 23 

LST values observed owing to the SCSG effect. We demonstrated the utility of this approach by 24 

using MODIS/Aqua daytime LST data over Qinghai-Tibet Plateau (QTP) and validated the 25 

interpolation results against representative in-situ LST observations and two recently published all-26 

weather LST datasets. When compared to the corresponding in-situ measurements, the interpolated 27 

cloudy-sky LST values showed satisfactory accuracy with a mean absolute error (MAE) value of 28 

3.99 ºC and a coefficient of determination (R2) value of 0.74, while the MODIS/Aqua clear-sky LST 29 

values led to an MAE value of 2.66 ºC and an R2 value of 0.86. Compared to the two all-weather 30 

LST datasets, results of this study showed the highest accuracy over the data-gap-filled regions in 31 

terms of all quantitative performance metrics, more natural transition textures, and better 32 

representation of seasonal characteristics. The proposed framework has the advantage of relying on 33 

the MODIS family data and handling extensive missing data as well as triggers opportunities to 34 

leverage the SCSG effect to produce high-quality all-weather LST data.  35 

Key words: land surface temperature (LST); solar-cloud-satellite geometry (SCSG); clear-sky LST 36 

equivalent; stepwise interpolation framework; cloud-contaminated pixels.  37 

1. Introduction  38 

Land surface temperature (LST) is an important variable related to surface energy and water 39 

balance at the local-to-global scales and is controlled by a complex interplay of topography, incident 40 

radiation, atmospheric processes, hydrology, and land use and land cover (Anderson et al., 2008; 41 

Brunsell and Gillies 2003; Kustas and Anderson 2009; Li et al., 2013). Globally, satellite remote-42 

sensing data continuously provide spatiotemporal coverage at the fine-to-coarse resolutions for LST 43 

(Tomlinson et al., 2011). Since satellite LST data can only be effectively retrieved from thermal 44 
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infrared (TIR) measurements under clear sky conditions, large areas of data gaps may occur due to 45 

missing values when the surface is obscured by clouds. Cloudy skies account for more than half of 46 

day-to-day weather conditions across the world (Hagihara et al., 2011). There is a growing demand 47 

for the development of effective cloud-removal algorithms for satellite LST products as the scarcity 48 

of high-quality all-weather LST data has severely limited hydrometeorological studies and the 49 

application of process-based models on the regional-to-global scale.  50 

Many algorithms have been developed to recover missing LST values caused by cloud cover, 51 

such as microwave-based methods (Shwetha and Kumar 2015; Tang et al., 2022; Xu and Cheng 52 

2021), surface energy balance (SEB)-based methods (Jin 2000; Martins et al., 2019; Yang et al., 53 

2019; Yu et al., 2019), and data fusion approaches (Long et al., 2020; Zhang et al., 2021; Zhao and 54 

Duan 2020). Some studies have attempted to interpolate cloud-free LST values from the 55 

neighborhood pixels with similar environmental characteristics to missing cloudy-sky ones (Chen 56 

et al., 2021; Collins et al., 2020; Li et al., 2018; Yu et al., 2015). However, the interpolation of these 57 

cloud-free LST values can lead to clear-sky biases with respect to actual cloudy-sky conditions 58 

(Collins et al., 2020; Ermida et al., 2019). Advantageous compared to infrared signals, microwave 59 

signals penetrate clouds and are less affected by atmospheric absorption while acquiring LST under 60 

all-sky conditions (Duan et al., 2020; Palaniyandi et al., 2021). However, microwave data suffer 61 

from a coarse spatial resolution and are very sensitive to surface conditions, such as soil moisture, 62 

surface roughness, and vegetation cover, thus resulting in large uncertainties in LST data (Duan et 63 

al., 2020; Prigent et al., 2016). SEB-based methods leverage the surface energy balance equation to 64 

calculate the difference in surface radiation flux between clear and cloudy sky conditions and then 65 

estimate missing LST values by accounting for the differences (Jia et al., 2021; Lu et al., 2011; Yu 66 
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et al., 2019). The SEB-based methods require ancillary data (e.g., wind speed, air temperature, and 67 

energy fluxes), the accuracy of which greatly affects the interpolation performance (Martins et al., 68 

2019). Recently, some studies have successfully merged remotely sensed TIR LST data with 69 

reanalysis data to generate all-weather LST data (Dumitrescu et al., 2020; Long et al., 2020; Zhang 70 

et al., 2021). In general, LST data products fused with reanalysis data are subject to large 71 

uncertainties as reanalysis data have a coarser spatial resolution than do TIR LST data as well as 72 

low accuracy (Mo et al., 2021). This is in particular true for remote areas with complex terrains and 73 

sparsely distributed in-situ observation sites, which in turn adversely affect the final accuracy of the 74 

fused products. 75 

In-situ observations provide the most reliable cloudy-sky LST values, thus playing a pivotal 76 

role in the validation of interpolated cloudy-sky LST data as well as the development of plausible 77 

methods to recover missing LST values. Tan et al. (2021) used in-situ LST data to calculate the 78 

cloudiness-induced biases in satellite LST before applying them to the recovery of cloudy-sky LST. 79 

There exist various difficulties in practice, such as an insufficient number of measurement sites and 80 

the issue of a spatial scale mismatch between in-situ observations and satellite observations (Coll et 81 

al., 2005; Li et al., 2013; Wan 2008). For example, for l-km LST data from the Moderate Resolution 82 

Imaging Spectroradiometer (MODIS), suitable in-situ observation sites should be both at least 5 km 83 

× 5 km in size and homogeneous (Wan 2008). Since few sites can meet these requirements, the use 84 

of in-situ observations to retrieve cloud-affected LST values remains limited. 85 

Owing to the solar-cloud-satellite geometry (SCSG) effect, there is an alternative way to 86 

compensate for the apparent weaknesses of in-situ observations. Since the sun and satellites have 87 

specific illumination and observation angles with respect to the ground, cloudy regions identified 88 
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by satellites do not exactly match the areas where clouds actually obstruct solar radiation. This effect 89 

is referred to as the solar-cloud-satellite geometry effect (Wang et al., 2017). Therefore, some 90 

regions where solar radiation is shadowed by clouds can be directly observed by satellites (Baraldi 91 

and Tiede 2018; Wang et al., 2017), through which the LST values of cloudy pixels can be known. 92 

The cloudy LST values interpolated via the satellite retrieval algorithm may have biases compared 93 

to the actual values due to the use of clear-sky parameters. Cloudy pixels with known LST values 94 

owing to the SCSG effect could be useful as they can provide many samples with cloud effects at 95 

the same resolution.  96 

In this study, we proposed a stepwise framework to estimate missing LST values based on 97 

cloudy pixels with known LST values owing to the SCSG effect. Based on observation geometry, 98 

an LST image can be partitioned into the following four regions: two clear-sky regions and two 99 

cloudy-sky regions, with each containing a region with missing LST values (Wang et al., 2019). 100 

First, clear-sky LST equivalents were estimated for all cloud-affected pixels via a similarity-based 101 

approach (Chen et al., 2021). Finally, the missing cloudy-sky LST values were estimated by training 102 

a machine-learning model on cloudy-sky pixels with known LST values and on clear-sky 103 

equivalents already prepared. This framework is flexible enough to accommodate any existing clear-104 

sky interpolation approach in the first step (Chen et al., 2021; Metz et al., 2014; Neteler 2010; Yu 105 

et al., 2015) as well as suitable machine-learning algorithms in the final step. 106 

2. Process of the framework 107 

2.1. Overall framework of the SCSG-based approach 108 

The satellite and sun have specific illumination and observation angles with respect to the 109 
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ground. When a surface is covered by clouds, a special observation geometry known as the SCSG 110 

forms (Wang et al., 2019). Based on the SCSG effect (Wang et al., 2019), each MODIS LST image 111 

was partitioned into four SCSG regions (A, B, C, and D) based on the cloud-top height and 112 

sun/satellite illumination/view angles provided by the MODIS data family (see Section 2.2). 113 

Regions A and B were under clear skies, whereas regions C and D were under cloudy skies. The 114 

LST values were known in regions A and D but unknown in B and C, which were to be predicted 115 

via interpolation. Cloudy region D with known LST values was of great significance for providing 116 

samples to recover unknown LST values under cloudy skies. 117 

The proposed interpolation framework leveraged the SCSG effect to interpolate for missing 118 

LST values in the MODIS LST products. Fig. 1 illustrates the general workflow of this study, 119 

consisting of four steps. First, MODIS LST images were partitioned into the four SCSG regions 120 

(Wang et al., 2017; Wang et al., 2019) (Fig. 1a). Though known, the LST values in cloudy region 121 

D may be biased due to the use of clear-sky parameters in the LST inversion algorithm. This study 122 

relied on in-situ observations at representative sites in order to reduce LST biases in region D. 123 

Second, a clear-sky interpolation method with the advantage of effectively handling large data gaps 124 

(Chen et al., 2021) was employed to estimate the clear-sky LST equivalents for every pixel in 125 

regions B, C, and D (Fig. 1b). The clear-sky LST equivalents in region B well approximated the 126 

true clear-sky LST values in this region, whereas the equivalents in regions C and D were needed 127 

to recover the missing cloudy LST values in region C.  128 

Third, the LST values in region C were estimated (Fig. 1c). This was carried out under the 129 

assumptions that there existed pixels in region D with high similarity to each missing cloudy-sky 130 

pixel in region C in order to determine cloud effects on the LST as well as that both shared the same 131 
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prediction model representing the cloudy-sky LST value as a function of environmental factors and 132 

clear-sky LST equivalent. In practical applications, this approach first spatially divides the pixels in 133 

region C into many clusters based on environmental predictors to boost computational efficiency. 134 

Second, a machine-learning model, multivariate adaptive regression splines (MARS) in the present 135 

study, is trained for each cluster with the region D pixels that were identified as similar to the cluster 136 

centroid, for which clear-sky LST equivalents, cloudy-sky corrected LST values, and environmental 137 

predictors are readily known. Finally, these prediction models are applied on a cluster-by-cluster 138 

basis to the region C pixels in order to determine the missing cloud-sky LST values, provided that 139 

the values of environmental predictors are available.  140 

After these three steps are completed, an all-weather LST image is generated. In the last step 141 

(Fig. 1d), this study also tested the accuracy and precision of the generated all-weather LST images 142 

based on both visual inspection and quantitative performance metrics. To better describe the process 143 

involved, the following subsections explain the image partitioning based on the SCSG effect in 144 

Section 2.2; the bias correction of cloudy-sky LST values in region D in Section 2.3; the estimation 145 

of clear-sky equivalents in regions B, C, and D in Section 2.4; and the recovery of missing cloudy-146 

sky LST values in region C in Section 2.5. 147 
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 148 

Fig. 1 The workflow of interpolating missing values of satellite land surface temperature (LST) based on 149 

the solar-cloud-satellite geometry (SCSG) effect. (a) Partitioning of the Moderate Resolution Imaging 150 

Spectroradiometer (MODIS) LST image based on the SCSG effect. Region A was under clear sky with 151 

known LST values. Regions B and C had missing LST pixels; region B was under clear sky, whereas 152 

region C was under cloudy sky. Region D was under cloudy sky with known LST values. Due to the use 153 

of the clear-sky parameter in the LST inversion algorithm, observed LST values in region D were most 154 

likely to be biased unless corrected by in-situ observations at representative sites. (b) Implementation of 155 
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a clear-sky LST interpolation method following Chen et al. (2021) for pixels in regions B, C, and D. (c) 156 

Recovery of missing LST values in region C via multivariate adaptive regression splines (MARS) trained 157 

on the region D pixels with bias-removed cloudy-sky LST values. An all-weather LST image was 158 

obtained by assembling all the processed SCSG regions. (d) Evaluation of the all-weather LST image via 159 

visual inspection and quantitative performance metrics. 160 

2.2. Image partitioning based on the SCSG effect 161 

Fig. 2 illustrates the concept of the SCSG effect. Based on this effect, MODIS LST images 162 

were partitioned into the following four regions: region A was clear-sky with valid satellite LST 163 

observations; region B was clear-sky with no known LST; region C was cloud-obscured with no 164 

known LST; and region D was cloud-obscured with known LST owing to the visible viewing angle 165 

from the satellite to the surface. When the satellite viewing zenith/azimuth angles, solar 166 

zenith/azimuth angles, and cloud-top height are known, the cloud shadow positions on the ground 167 

can be calculated from the observation geometry (Fig. 2) as follows (Wang et al., 2019): 168 

 �
𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐻𝐻 𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃𝑣𝑣 𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝑣𝑣
𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐻𝐻 𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑𝑣𝑣

 (1) 169 

 �
𝑋𝑋𝑠𝑠ℎ𝑤𝑤 = 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐻𝐻 𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝑠𝑠
𝑌𝑌𝑠𝑠ℎ𝑤𝑤 = 𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐻𝐻 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑𝑠𝑠

 (2) 170 

where (Xmap, Ymap) is the position of the cloud in a satellite LST image and is probably a pseudo 171 

position within regions B or C; (Xpro, Ypro) is the orthographic projection of cloud onto the surface; 172 

and (Xshw, Yshw) is the actual cloud shadow region where clouds obstructed solar radiation and 173 

formed regions C and D; H is the cloud-top height above the surface, determined by subtracting the 174 

surface altitude from the cloud-top height provided by the MODIS Level-2 cloud product 175 

(MOD/MYD06_L2); θv and φv are the satellites observing the zenith and azimuth angles, 176 
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respectively; and θs and φs are the solar zenith and azimuth angles, respectively. 177 

 178 

Fig. 2 Illustration of the SCSG effect shown on a satellite LST image, as modified from Wang et al. 179 

(2019). Region A was under clear sky. Regions B and C were obscured by clouds from the satellite view, 180 

shown in an LST image as missing pixels (Xmap, Ymap). Regions C and D were the actual shadow regions 181 

(Xshw, Yshw), but region D was visible from the satellite and had known LST values. Please refer to Eqs. 182 

(1) and (2) for the abbreviations and symbols used. The inset shows the shadow gaps on the LST image 183 

resulting from the large difference in cloud-top height between nearby cloud-covered pixels.  184 

The steps to partition a MODIS LST image into the SCSG regions are presented below: 185 

1) Smoothing pixelated data of cloud-top height  186 

A giant cloud body is not homogeneous everywhere and varies in cloud-top height. The 187 

MODIS instrument records spatially continuous cloud-top heights with many numerically discrete 188 

pixel-by-pixel heights. In this case, if the height difference between two adjacent cloudy pixels is 189 
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large, shadow gaps can appear on the surface according to Eqs. (1) and (2) (see inset in Fig. 2), when 190 

sunlight illuminates the cloud top at certain zenith angles. Shadow gaps are unreasonable for 191 

intrinsically continuous cloud bodies (Wang et al., 2019). To address this issue, the MODIS cloud-192 

top height data were smoothed by using a mean filter with a 15 × 15 window. Although Wang et al. 193 

(2019) suggested a 7 × 7 window for smoothing cloud-top height data over Qinghai-Tibet Plateau 194 

(QTP), after many trials, a window of 15 × 15 was preferred in this study, because it allowed for 195 

more effective reduction of data gaps without a significant degradation in accuracy due to the wider 196 

window.  197 

2) Partitioning an LST image into SCSG regions 198 

Based on the cloud positions detected by the satellite (Xmap, Ymap) and the sun/satellite 199 

illumination/view angles (φv, φs, θv, θs), the orthographic cloud projection onto the surface (Xpro, Ypro) 200 

can be estimated from Eq. (1). The cloud shadow positions (Xshw, Yshw), where solar radiation is 201 

obstructed by clouds, can be calculated from Eq. (2). All shadow pixels whose LSTs were observed 202 

were classified into region D, otherwise into region C. Region A consisted of pixels with known 203 

LST, except for those already in region D. The remaining pixels whose LSTs were unknown, except 204 

for those already in region C, constituted region B; but some of whose cloud-top heights recorded 205 

by the satellite were lower than their altitudes were reassigned to region C. 206 

3) Post-processing to eliminate anomalies 207 

As shown in Fig. 3 there were some anomalies in the resulting SCSG images, such as 208 

MODIS/Aqua daytime LST image on day 18 of 2003 over a subregion of QTP. In this study, the 209 

three main types of anomalies (illustrated by R1, R2, and R3 in Fig. 3a) were removed by post-210 

processing the resulting SCSG images, as described below.  211 
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The anomalies shown in subregion R1 (Fig. 3a) were related to the process of smoothing the 212 

cloud-top height data, in particular, over a large cloudy area, thus resulting in misclassification in 213 

the SCSG images. These anomalies appeared to be a few region B pixels surrounded by region C 214 

pixels. To resolve this issue, we applied a 5 × 5 moving window to each region B pixel and 215 

reclassified the pixel based on a majority rule within the window. The size of the moving window 216 

was determined via visual inspection to minimize the occurrence of such anomalies in the resulting 217 

image, as shown in subregion R1 in Fig. 3b.  218 

The second type of anomaly was caused by a discontinuity in viewing/solar angle data, where 219 

two MODIS scans overlapped (e.g., subregion R2 in Fig. 3a). The overlaps can be identified by 220 

abrupt changes between adjacent pixels in the MODIS angular image. Therefore, we subtracted the 221 

angular image from a new image created by shifting the angular image by one column to the right 222 

and applied a threshold of 100° to the resulting difference image to detect the affected pixels. Then, 223 

pixels near the affected pixels were processed by using a moving window with a majority-voting 224 

scheme.  225 

Subregion R3 in Fig. 3a shows anomalies due to small data gaps in the MODIS instrumental 226 

coverage from the equator to 50° latitude as well as coverage overlapping from 50° latitude 227 

poleward (Masuoka et al., 1998). Since these gaps did not contain adequate information to 228 

accurately classify the SCSG region, we roughly classified them as region C if they were acquired 229 

in spring and summer, when clouds are more likely to occur in the northern hemisphere, otherwise 230 

as region B (Mao et al., 2019).  231 
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 232 

Fig. 3 An example of SCSG partition based on the 18th daytime MODIS/Aqua LST image in 2003 over 233 

a subregion of Qinghai-Tibet Plateau (QTP) (a) before and (b) after anomaly removal. The SCSG 234 

regions (A-D) are shown in different colors, and three subregions (R1, R2, and R3) with typical 235 

anomaly sources are marked by rectangles. 236 

2.3. Bias correction of cloudy-sky LST values in region D 237 

SCSG region D was in the shadow of clouds but could be viewed from the satellite owing to 238 

the differences between the solar illumination angles and satellite observation angles. The known 239 

LST values in region D served as independent cloud-affected observations to be used to formulate 240 

a relationship to account for cloud-induced biases so that missing LST values in region C due to 241 

cloud cover could be determined. The LST values of region D pixels could also be biased, because 242 

in the MODIS LST inversion algorithm, the band emissivities retrieved on previous days were used 243 

as the initial emissivity values for new retrievals. In the presence of clouds, the retrieved TIR band 244 

emissivity values may be lower than normal values under cloudy conditions (Wan 2008). Therefore, 245 

a procedure at the fundamental level of the LST inversion algorithm is needed to correct for the LST 246 

biases in region D pixels and needs to be tested prior to becoming qualified for use in subsequent 247 
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steps. However, in this study, this task was accomplished based on in-situ LST observations at 248 

ground sites representative of LST variations in the vicinity and performed independently of the 249 

proposed approach.  250 

For a model to be built to treat biases for region D pixels, valid data points were located from 251 

the LST time-series observations at representative ground sites. The SCSG regions were created for 252 

all MODIS LST images spanning multiple years. For each MODIS cell with a representative site, 253 

the timing at which the cell was classified as region D was determined and used as the basis for 254 

finding the corresponding in-situ data points. It was likely that no exact temporal match existed 255 

between the satellite and in-situ observations as the former was instantaneous, whereas the latter 256 

was often measured hourly. We linearly interpolated the in-situ data at the satellite overpass time 257 

from the two closest time points. For example, the in-situ data points between 1:00 and 2:00 pm 258 

local time were linearly interpolated to provide the in-situ LST for a satellite acquisition time of 259 

approximately 1:30 pm for MODIS/Aqua. It should be noted that the fraction of usable data points 260 

for QTP may not be large due to the small size of region D and the limited number of representative 261 

QTP sites. Based on the valid data pairs comprising the SCSG region-D LST and simultaneous in-262 

situ cloudy-sky LST, empirical mathematical models were constructed to remove systematic biases 263 

from the region D LST values. In the case study of QTP, the linear model was found to be 264 

satisfactory for this purpose (see Section 4.3). 265 

2.4. Estimation of clear-sky LST equivalents 266 

For SCSG regions B, C, and D, the clear-sky LST equivalents were interpolated. This study 267 

adopted the approach developed by Chen et al. (2021), based on the concept of similarity, under the 268 
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assumption that each interpolated LST pixel had spatially similar pixels in terms of temperature 269 

change over time. This approach depended on the reference LST images that were not only 270 

temporally adjacent to the image being interpolated, but also had a matching overpass time and 271 

spatial coverage. For each missing pixel in the interpolated image, temporally proximate images, 272 

such as those within a time window (e.g., 15 d) centered on the interpolated image, were considered 273 

the reference images only if the images had a valid LST value at the interpolated location and 274 

contained a relatively high proportion of valid pixels. Consequently, the reference images were 275 

variable for each interpolated pixel. 276 

With each reference image pertinent to the interpolated pixel, the pixel value was estimated 277 

from the empirical orthogonal function (DINEOF) method (Alvera-Azcárate et al., 2005; Beckers 278 

and Rixen 2003). This method relied on the LST values of similar pixels determined from both the 279 

interpolated image and each associated reference image based on a high consensus on a number of 280 

environmental predictors, such as normalized difference vegetation index (NDVI), digital elevation 281 

model (DEM), slope, aspect, and clear-sky direct shortwave solar radiation. Multiple LST estimates 282 

could be made for each interpolated pixel because a given interpolated pixel could be associated 283 

with multiple reference images. A Bayesian approach (Kumar et al., 2007) was then applied to merge 284 

these initial estimates and obtain the best estimate of LST for the interpolated pixel. It should be 285 

noted that it was likely that some pixels had no qualified reference images in which case these pixels 286 

were assigned null. According to our experiments, the fraction of pixels with null values for each 287 

image after the interpolation was small. Some conventional geostatistical interpolation approaches 288 

can be employed to effectively fill the remaining missing pixels, given the small number, and 289 

produce a non-missing LST image. 290 
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This approach was tested with purposively generated large data gaps in the MODIS LST 291 

images of QTP and was used to compare the interpolation results to the actual data. As a result, it 292 

was found to outperform the conventional approaches in terms of interpolating for large areas of 293 

missing data. As this approach used only clear-sky LST values, the interpolation results did not 294 

include cloud effects. 295 

2.5. Recovery of missing cloudy-sky LST values in region C 296 

The pixels in region D with bias-corrected cloudy-sky LST values provided important 297 

information about cloud effects on LST in order to recover missing LST values in region C due to 298 

cloudiness. Although the SCSG effect is only based on cloud shape, the LST values in region D 299 

were synthesized from all cloud effects, such as cloud shape, thickness, and composition, and were 300 

then strengthened via the bias correction process based on the in-situ observations of cloudy-sky 301 

LST. In the recovery of missing cloudy-sky LST values in region C, it was assumed that, for each 302 

interpolated pixel in region C, there were spatially similar pixels in region D with respect to the 303 

environmental predictors and clear-sky LST equivalents. The interpolated pixels and their similar 304 

pixels had similar cloud conditions and shared a statistical model representing the cloudy-sky LST 305 

value as a function of the environmental predictors. Thus, for each interpolated pixel, a statistical 306 

model could be identified from similar pixels. In our implementation, interpolation was conducted 307 

on the clusters instead of pixels for computational efficiency. The steps involved spatially clustering 308 

the pixels in region C, identifying pixels in region D with high similarity to the cluster centroid, 309 

training a specific LST-prediction model for each cluster, and then applying the model to estimate 310 

unknown LSTs of region C pixels that were part of that cluster. The same steps were iterated for all 311 
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clusters in region C.  312 

To perform a cluster analysis between pixels and identify similar pixels, the environmental 313 

predictors should be determined. LST is the result of many combined impacts and is closely related 314 

to a number of environmental factors, such as land-use/cover change, NDVI, soil moisture, elevation, 315 

slope, aspect, and incident solar radiation (Deng et al., 2018; Tian et al., 2012; Van De Kerchove et 316 

al., 2013). Incident solar radiation partially reflects cloud characteristics (Kasten and Czeplak 1980) 317 

and helps to find pixels under similar cloud conditions. In this study, the attributes specified for 318 

cluster analysis were clear-sky LST equivalents; topographic factors of elevation, aspect, and slope; 319 

surface condition factors of NDVI and albedo; and solar radiation factors of downward shortwave 320 

radiation (DSR) and net surface shortwave radiation (NSSR). These data were obtained from 321 

MODIS, DEM, and DEM-derived datasets. The k-means method was applied with 1000 clusters. 322 

The centroids of all the clusters were identified. The same set of attributes for cluster analysis was 323 

used to define similar pixels in region D. A simple Euclidean distance equation was used as the 324 

similarity function. For each cluster centroid in region C, the first 1000 pixels with the highest 325 

similarities formed a similar group for the cluster centroid. 326 

The MARS model was used to build a prediction model for cloudy-sky LST, given its 327 

advantage in handling nonlinear dependencies and high-dimensional data. The MARS algorithm 328 

takes the form of an expansion in the product spline basis functions, where the number of basis 329 

functions and the parameters associated with each function are automatically determined by the 330 

training data. This procedure is motivated by recursive partitioning and shares the ability to capture 331 

high-order interactions. This model has a forward process for generating a set of basis functions 332 

over the domain of interest and a backward process for preventing overfitting. To estimate cloudy 333 
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LST, one MARS model was trained for each cluster in region C as a function of the environmental 334 

predictors and the clear-sky LST equivalent (Eq. (3)). The well-trained MARS models were then 335 

applied to the pixels in region C on a cluster-by-cluster basis to estimate their cloudy-sky LSTs. 336 

 𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝐷𝐷,𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐)  (3) 337 

where LSTcld is the cloudy-sky LST value; LSTclr is the clear-sky LST equivalent; and SD represents 338 

the environmental predictors of elevation, aspect, slope, NDVI, albedo, DSR, and NSSR. 339 

3. Study area and performance evaluation 340 

3.1. Study area and data 341 

The proposed approach was tested on the study area of Qinghai-Tibet Plateau (Fig. 4). The 342 

plateau is bounded by 26º00′–39º47′N and 73º19′–104º47′E, with an average elevation of more than 343 

4000 m above sea level (a.s.l.) and an area of approximately 2.6 million km2. Due to the combined 344 

effect of westerlies, the East Asia monsoon, and the Tibetan Plateau monsoon, there were significant 345 

cloud-related data gaps in the MODIS LST data products, typically extending more than half a year 346 

(Yu et al., 2015). The experimental satellite daytime LST data were obtained from the MODIS Land 347 

Surface Temperature/Emissivity Daily L3 Global 1 km dataset (MYD11A1) onboard the Aqua 348 

satellite with equatorial overpasses at approximately 1:30 pm in ascending orbit and 1:30 am in 349 

descending orbit. To align with the in-situ measurements used in this study, data for 2002–2004 and 350 

2009–2010 were selected.  351 
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 352 

Fig. 4 Map showing the topography of Qinghai-Tibet Plateau and the locations of candidate sites where 353 

in-situ LST observations were available. Representative sites were determined from the candidate sites 354 

with reference to their representativeness for the 1-km MODIS LST pixels that contained the in-situ 355 

measurement sites.  356 

The two MODIS products of the Geolocation Fields 5-Min L1A Swath 1 km dataset (MYD03), 357 

which provides solar and satellite observation angles, and the Clouds 5-Min L2 Swath 1 km dataset 358 

(MYD06_L2), which provides cloud-top heights, were used to support the SCSG partitioning. The 359 

data used to estimate clear-sky LST equivalents were the Vegetation Indices 16-Day L3 Global 1 360 

km dataset (MYD13A2), the Shuttle Radar Topography Mission (SRTM) 90 m DEM, and DEM-361 

derived data, such as slope and aspect. The clear-sky direct shortwave solar radiation data were 362 

estimated from the incident angle as a function of the time of year, latitude, altitude, slope, and 363 
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aspect, as were diffuse and reflective radiation (Kumar et al., 1997).  364 

The environmental predictors supporting cloudy-sky LST retrieval were extracted from the 365 

following MODIS data family: MYD13A2 NDVI, the Surface Radiation Daily/3-Hour L3 Global 366 

1 km dataset (MCD18A1), Global Land Surface Satellite (GLASS) albedo data (Liang et al., 2013), 367 

and SRTM providing topographic factors. MCD18A1 provides a 1-km gridded MODIS Terra/Aqua 368 

combined DSR at two temporal resolutions (instantaneous and 3-h). Because the instantaneous DSR 369 

data at the time of the MODIS overpass contain significant coverage gaps due to cloud 370 

contamination, we used the 3-h DSR data and interpolated the value at the overpass time from the 371 

two closest time points. GLASS albedo data were also used (Liang et al., 2013), because they offer 372 

gap-free, high-quality albedo data for this study. The NSSR, defined as NSSR = DSR × (1-albedo), 373 

was calculated based on MCD18A1 and the GLASS albedo data. The 90-m SRTM DEM data were 374 

up-scaled by computing an 11 × 11 aggregate mean before bilinear resampling to align with the 1-375 

km MODIS pixel centers. 376 

Two all-weather LST datasets publicly available from the National Tibetan Plateau Data Center 377 

were used to cross-validate the interpolated cloudy-sky results of this study. One was a fused 1-km 378 

LST dataset from the Advanced Microwave Scanning Radiometer 2 (AMSR2) and MODIS/Aqua 379 

daytime/nighttime LST (MYD11A1) data (hereafter referred to as PTM LST) spanning 2000–2020 380 

using a cumulative distribution function-matching approach and a multiresolution Kalman-filtering 381 

approach (Xu and Cheng 2021). The other was a merged 1-km LST dataset generated by merging 382 

the MYD11A1/LST daytime/nighttime product and GLDAS LST data (hereafter referred to as RTM 383 

LST) spanning 2000–2020 based on a temporal component-decomposition model, which 384 

decomposed cloudy LST time series into the three components of an annual cycle, a diurnal change, 385 



21 
 

and cloud effect, with the annual and diurnal components being estimated from clear-sky LSTs and 386 

with the cloud effect component from reanalysis data (Zhang et al., 2021). A subset of 2002–2004 387 

and 2009–2010 was extracted from the two datasets for a comparison to our interpolated results.  388 

Although many datasets were required as the inputs to the proposed approach, they could be 389 

acquired from the same MODIS product family (Table 1). The only exception was the SRTM data, 390 

which were assumed to be constant over the study period. Based on the literature review, the 391 

accuracies of all the satellite data collected for QTP are listed in Table 1. Because the MYD03 392 

product only provides satellite viewing angles and solar illumination angles, no accuracy was 393 

provided. The same MODIS family was used to collect data in order to maximize data availability 394 

and minimize uncertainties associated with spatiotemporal scale mismatches.  395 

 396 

Table 1 Datasets as the inputs to the proposed approach and their reported accuracies over QTP based 397 

on literature review. Other variables required were derived from these datasets. The Shuttle Radar 398 

Topography Mission (SRTM) data were up-scaled to 1 km to match the other data. RMSE: root mean 399 

square error; MAE: mean absolute error; and STD: standard deviation. 400 

Product 

code 

Spatial/temporal 

resolutions 
Variable(s) provided Accuracy over QTP 

MYD11A1 1 km/daily Daytime LST 

 

View time 

3.34–5.58 ºC in RMSE (Duan 

et al., 2019) 

/ 

MYD03 1 km/daily View zenith/azimuth angle 

Solar zenith/azimuth angle 

/ 

/ 

MYD06_L2 1 km/5 min Cloud-top height 0.87–1.58 km in MAE (Yang 

et al., 2021) 
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MYD13A2 1 km/16 d NDVI 0.042–0.086 in RMSE (Sajadi 

et al., 2021) 

MCD18A1 1 km/3 h Downward shortwave 

radiation 

134.8–172.6 W/m2 in RMSE 

(Wang et al., 2021) 

GLASS 

Albedo 

1 km/8 d Albedo Black-sky: 0.055–0.092; 

white-sky: 0.052–0.088 

(RMSE) (An et al., 2020) 

SRTM 90 m Elevation 4.58 ± 26.01 m in STD (Huang 

et al., 2011) 

 401 

3.2. Representative sites and performance of clear-sky MODIS LST for QTP 402 

Only a few sites in QTP provided in-situ LST observations. We collected in-situ observations 403 

from a total of 14 candidate sites (Fig. 4), mainly from the following two sources: the Coordinated 404 

Energy and Water Cycle Observations Project (CEOP) for eight sites with a data period of 2002–405 

2004 (Ma et al., 2006) and the Institute of Tibetan Plateau Research (ITP) of the Chinese 406 

Academy of Science for six sites for hourly data as of 2005 (Ma et al., 2020). Only observations 407 

for the period of 2009–2010 at the ITP sites were used since one of the ITP sites became 408 

operational in 2009. 409 

Unlike the CEOP dataset, which provides ready-to-use LST data, the ITP dataset contained 410 

only measurements of outgoing and incoming shortwave and longwave radiation fluxes, which were 411 

used to derive LST from the Boltzmann’s law thus: 412 

 𝐿𝐿𝐿𝐿𝐿𝐿𝑔𝑔 = �𝑅𝑅𝑔𝑔−(1−𝜀𝜀𝑏𝑏)𝑅𝑅𝑑𝑑
𝜎𝜎𝜎𝜎𝑏𝑏

�
1/4

  (4) 413 

where LSTg is the in-situ LST; Rg is the upwelling broadband hemispherical radiance (W/m2); Rd is 414 
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the downwelling broadband hemispherical radiance (W/m2); σ is the Stefan-Boltzmann constant 415 

(5.67×10-8 W/m2/K4); and εb is the broadband emissivity, which can be estimated from the Advanced 416 

Space Thermal Emission and Reflection Radiometer (ASTER) Terra emissivity product (AST_08 417 

v003) via a spectral-to-broadband linear regression equation as follows (Cheng et al., 2013): 418 

𝜀𝜀b = 0.197 + 0.025𝜀𝜀10 + 0.057𝜀𝜀11 + 0.237𝜀𝜀12 + 0.333𝜀𝜀13 + 0.146𝜀𝜀14  (5) 419 

where ε10-ε14 are the narrowband surface emissivities of ASTER bands 10–14, respectively.  420 

In this study, we identified representative sites from the 14 candidate sites from two 421 

perspectives. First, we measured the spatial homogeneity of the sites from the spatial standard 422 

deviation (STD) values of LSTs based on ASTER LST data (AST_05 v003) at a spatial resolution 423 

of 90 m, as described by Duan et al. (2019). More specifically, a single MODIS LST pixel covering 424 

11 × 11 ASTER pixels and the LST observations on the ASTER pixels were used to calculate the 425 

spatial STD values for the ground site of interest. A multi-year average of the spatial STD values 426 

can indicate site representativeness within the corresponding MODIS cell in terms of spatial 427 

homogeneity. Second, we measured site representativeness based on the bias metrics between the 428 

in-situ clear-sky LST measurements and the corresponding MODIS LSTs in SCSG region A.  429 

In our quantitative evaluation, the following performance metrics were used: bias (BIAS), 430 

mean absolute error (MAE), root mean square error (RMSE), unbiased RMSE (ubRMSE), and 431 

coefficient of determination (R2). We used BIAS for average error and MAE for average absolute 432 

error. Unlike BIAS and MAE, RMSE quantifies the errors with more weights for large deviations, 433 

whereas ubRMSE excludes systematic errors from RMSE. R2 measures the agreement between the 434 

in-situ measurements and interpolation results, calculated as the proportion of the variation in the 435 

response variable that is predictable from the explanatory variables. Higher values of R2 and lower 436 
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values of BIAS, MAE, RMSE, and ubRMSE indicate better performance. A negative R2 value 437 

indicates that the predictions are worse than a constant function that always predicts the mean of the 438 

data. 439 

Fig. 5 shows the representativeness of the sites in terms of the spatial homogeneity of LST, as 440 

measured by the spatial STD values of LSTs over the 1-km MODIS pixels containing the sites based 441 

on the ASTER LST observations for 2002–2010. Among the 14 candidate sites, the CEOP sites, 442 

such as BJ-SAWS2 (C2), BJ-Tower (C3), and MS3478 (C7) (Fig. 5a), and the ITP sites, such as BJ 443 

(ITP1), QOMS (ITP5), and SETORS (ITP6) (Fig. 5b), showed significant heterogeneity with a high 444 

median or a wide range of the spatial STD values. When the MODIS/Aqua clear-sky daytime LST 445 

observations were compared to the in-situ LST measurements available at the MODIS acquisition 446 

time (Fig. 6), the sites of MS3478-AWS (C7), BJ (ITP1), QOMS (ITP5), and SETORS (ITP6) 447 

showed considerable biases in RMSE, MAE, and BIAS. For these sites, the LST heterogeneity was 448 

also observed in terms of the spatial STD values. However, for some sites, such as Gaize (C6) and 449 

NAMORS (ITP4), identified as relatively homogeneous in terms of the spatial STD values, the 450 

RMSE values between the in-situ LSTs and MODIS LSTs differed by more than 5 °C under clear 451 

skies. While Gaize (C6), BJ (ITP1), NAMORS (ITP4), and SETORS (ITP6) showed a large BIAS 452 

range of -9.62 to -4.14 ºC, their ubRMSE values were less than 3.5 °C, indicating that the satellite 453 

clear-sky LST observations at these locations were largely subject to systematic biases. 454 

With the criteria of less than 3.5 ºC in the median spatial STD, less than 4.5 ºC in RMSE, and 455 

less than 2.5 ºC in BIAS between the in-situ LSTs and MODIS clear-sky LSTs, the four CEOP sites 456 

of ANNI-AWS (C1), D105-AWS (C4), D66-AWS (C5), and MS3608-AWS (C8) and the two ITP 457 

sites of MAWORS (ITP2) and NADORS (ITP3) were determined as the representative sites of a 1-458 
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km MODIS pixel for the LST variations (Table 2).  459 

Prior to evaluating the performance of the interpolated cloudy-sky results, we tested the 460 

performance of MODIS/Aqua clear-sky daytime LST data at the six representative QTP sites in 461 

order to obtain the baseline accuracy for the proposed approach. The overall performance of the 462 

MODIS/Aqua clear-sky daytime LST observations was excellent for QTP, with a low MAE value 463 

of 2.66 ºC, a low systematic BIAS value of 0.06 ºC, and a high R2 value of 0.86 (n = 1078). 464 

Typically, MODIS LST data were reported to exhibit relatively low consistency with the in-situ 465 

observations for QTP than for flat regions due to the complexity of the mountainous terrain (Duan 466 

et al., 2019; Ryu et al., 2008), a factor that significantly limited the site representativeness in the 467 

MODIS pixel. It should be noted that we only evaluated sites based on MODIS/Aqua daytime 468 

LST data. Since the spatial variability of nighttime LST is usually less than that of daytime LST 469 

(Duan et al., 2019), there may be more sites representative of a MODIS pixel for nighttime LST.  470 

 471 

Fig. 5 Spatial homogeneity of available LST sites for QTP, as measured by the STD values of LSTs in a 472 

1-km MODIS pixel containing the in-situ measurement site, based on LST observations from 11 × 11 473 

Advanced Space Thermal Emission and Reflection Radiometer (ASTER) LST pixels covered by this 474 

MODIS pixel. (a) shows the boxplot of the spatial STD values for the Coordinated Energy and Water 475 

Cycle Observations Project (CEOP) network sites: C1(ANNI-AWS), C2(BJ-SAWS2), C3(BJ-Tower), 476 
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C4(D105-AWS), C5(D66-AWS), C6(Gaize), C7(MS3478-AWS), and C8(MS3608-AWS). (b) shows the 477 

boxplot of the spatial STD values for the monitoring sites operated by Institute of Tibetan Plateau 478 

Research (ITP) of Chinese Academy of Science: ITP1(BJ), ITP2(MAWORS), ITP3(NADORS), 479 

ITP4(NAMORS), ITP5(QOMS), and ITP6(SETORS). n is the number of valid samples for 2002–2010 480 

used to create the boxplot. The boxes represent 25%–75% quartiles and the whiskers are 1.5 interquartile 481 

ranges from the medians shown as the red lines in the boxes. The dots denote outlier values. The site 482 

locations can be found in Fig. 4.  483 

 484 

 485 

Fig. 6 Performance of MODIS/Aqua clear-sky LST observations at candidate sites, as indicated in a 486 

variety of metrics. ubRMSE: unbiased RMSE; R2: coefficient of determination. The negative R2 value 487 

found at ITP6 indicates that the MODIS clear-sky LST is a worse fit than the mean of corresponding 488 

in-situ values. The same site codes are applied as in Fig. 5.  489 
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 490 

Table 2 Six QTP sites identified as the representative sites from the candidates consisting of the CEOP 491 

network sites and the ITP monitoring sites. These sites were used to calibrate the cloudy-sky LST 492 

values in region D and validate the interpolated results in region C. 493 

Station  Source Latitude 

(ºN) 

Longitude 

(ºE) 

Elevation 

(m a.s.l.) 

Land cover  Data length 

ANNI-AWS CEOP 31.25 92.17 4480 Bare land 2002–2004 

D66-AWS CEOP 35.52 93.78 4585 Bare land 2002–2004 

D105-AWS CEOP 33.06 91.94 5039 Bare land 2002–2004 

MS3608-AWS CEOP 31.23 91.78  4589 Bare land 2002–2004 

NADORS ITP 33.39 79.79 4270 Alpine desert 2009–2016 

MAWORS ITP 38.41 75.05 3668 Alpine desert 2010–2016 

 494 

3.3. Strategies for evaluating the interpolation results 495 

The in-situ observations at the representative sites served to correct the cloudy LST values in 496 

region D and validate the interpolated results in region C. We evaluated the proposed approach 497 

based on two aspects. First, we extracted the time series of the interpolated cloudy-sky LST values 498 

at the sites of MODIS pixels and compared them to the corresponding in-situ measurements. The 499 

in-situ cloudy LST measurements corresponding to SCSG region D were used for bias correction, 500 

while those corresponding to region C remained unused so that they could be used as validation 501 

data.  502 

Second, we compared the interpolated MODIS/Aqua LST images for 2002–2004 and 2009–503 

2010 with images from the two all-weather LST datasets of RTM LST (Zhang et al., 2021) and PTM 504 

LST (Xu and Cheng, 2021) for the same dates. We visually inspected these images for seasonal LST 505 
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characteristics at the regional scale and spatial patterns in typical subregions. We also evaluated the 506 

two LST datasets against the in-situ cloudy-sky observations at the representative QTP sites via the 507 

aforementioned quantitative metrics. Data points falling outside the 95% quantile were considered 508 

outliers and excluded prior to analysis. 509 

4. Results 510 

4.1. Partitioning of the MODIS LST images in relation to SCSG effect 511 

We arbitrarily selected four MODIS/Aqua daytime LST images (the 92nd, 213th, 305th, and 512 

348th day of 2010), each representing a different season in 2010, to demonstrate the partitioning 513 

results based on the SCSG effect (Fig. 7). The original MODIS LST images and the resultant SCSG 514 

partitions are shown in columns 1 and 2 in Fig. 7, respectively. The partitioned SCSG regions 515 

fulfilled our expectations, with regions B and D being mainly distributed along the edges of cloud 516 

cover and with regions A and C showing actual clear and actual cloudy sky areas, respectively. To 517 

verify these SCSG-based results, we visually inspected the partitioned SCSG regions on the MODIS 518 

false-color composite images via the same approach used in a previous study (Wang et al., 2019). 519 

Despite the satisfactory partitioning, some small problematic stripes even after post-processing 520 

measures were detected in some of the SCSG-partitioned images when large-scale overlaps occurred 521 

between the adjacent MODIS scans, such as the anomalous yellow stripes appearing on the images 522 

of the 92nd and 305th days east of QTP in Fig. 7.  523 

Fig. 8 shows the statistics of the percentage of pixels in the four SCSG regions for QTP in 2010. 524 

Fig. 8a shows the daily percentage distribution of pixels by region type, while Fig. 8b shows the 525 

number of pixels in region D for each day. Overall, regions A (with known clear-sky LST values) 526 
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and C (with unknown cloudy-sky LST values) occupied most of the area in each SCSG image. 527 

Regions B (with unknown clear-sky LST values) and D (with known cloudy-sky LST values) 528 

accounted for a relatively small proportion of the total pixels for QTP (0.4–7.8% and 0.5–7.9%, 529 

respectively, based on the daily MODIS/Aqua daytime LST images). The majority of cloudy pixels 530 

fell within region C, where interpolation was expected to be applied. Because QTP contained 531 

approximately 2.6 million pixels at a 1-km resolution, the absolute number of pixels in region D 532 

still remained large (Fig. 8b). In 2010, the number of region D pixels in each SCSG image ranged 533 

from 14,761 to 220,991 with a median of 116,984, and these pixels were scattered throughout the 534 

study area. The large number of pixels in region D ensured that there were enough samples to 535 

represent the complex effects of cloudy skies on LST. 536 

 537 

Fig. 7 Maps showing (a) the MODIS/Aqua daytime LST images, (b) the corresponding SCSG-538 
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partitioned images, and (c) the interpolated results of this study on four arbitrarily chosen dates (the 539 

92nd, 213th, 305th, and 348th day of 2010), with one from each season in 2010 for QTP. d: daytime.  540 

 541 

 542 

Fig. 8 Statistics on the percentage of pixels in the four regions (A, B, C, and D) in the SCSG-543 

partitioned images resulting from MODIS/Aqua daytime LST images in 2010. (a) Rose plot showing 544 

daily percentage distribution of pixels by region type. The black dotted lines for region B are mostly 545 

buried by the red solid lines. (b) Numbers of pixels in region D (with known cloudy-sky LST values) 546 

for each day in 2010. 547 

4.2. Performance of bias-corrected cloudy-sky MODIS LST values in region D 548 

Based on the six identified representative sites, we found 164 valid LST data pairs comprising 549 

the region D LST values of MODIS/Aqua and the corresponding in-situ cloudy-sky LST values for 550 

2002–2004 at the CEOP sites and for 2009–2010 at the ITP sites (Fig. 9). As can be seen in Fig. 9a, 551 

the region D LST values presented a pronounced negative deviation from the in-situ cloudy-sky 552 

measurements (BIAS = -4.48 ºC). Similar negative biases were previously reported for the MODIS 553 

Terra/Aqua cloudy-sky LST pixels (Østby et al., 2014; Williamson et al., 2013; Zhang et al., 2016). 554 

The negative discrepancies were largely related to the questionable estimates of the MODIS TIR 555 
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band emissivities under cloudy conditions. At the representative QTP sites, we found that the 556 

MODIS/Aqua daytime cloudy-sky LSTs were highly correlated with the in-situ measurements, with 557 

a Pearson’s correlation coefficient (R) of 0.92 and with no apparent site dependency, which we 558 

examined for each individual site. After a linear model was applied to remove systematic biases 559 

from the original MODIS/Aqua daytime cloudy-sky LST values, the bias-corrected data points (Fig. 560 

9b) appeared more concentrated along the diagonal line. The systematic biases (BIAS) in the 561 

corrected satellite cloudy-sky LSTs underwent a substantial reduction (before correction: -4.48 ºC; 562 

after correction: -0.09 ºC). In parallel, the MAE value declined from 4.98 to 3.58 ºC, while the R2 563 

value increased from 0.67 to 0.70. All these metrics consistently indicated the usability of bias-564 

corrected region D pixels in providing the samples of actual cloudy-sky LST values. 565 

 566 

Fig. 9 Bias-corrected MODIS/Aqua daytime LST values of the SCSG region D pixels, showing 567 

significantly improved agreement with the in-situ cloudy-sky LST observations at the six representative 568 

QTP sites, compared to values before correction. (a) Before bias correction. (b) After bias correction. 569 

Data points were extracted for 2002–2004 at the CEOP sites and for 2009–2010 at the ITP sites when the 570 

site locations were classified as region D due to the SCSG effect.  571 
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4.3. Accuracy assessment of the interpolated cloudy-sky LST pixels  572 

The interpolated results of this study are shown in the right-hand column of Fig. 7. The 573 

fractions of the missing data in the four MODIS/Aqua LST images (the 1st column in Fig. 7) were 574 

59% in spring, 51% in summer, 65% in autumn, and 50% in winter. The interpolated results well 575 

represented the spatial details of LST over QTP and showed a natural textural transition over the 576 

data-gap regions without significant anomalies. In terms of the spatial completeness, the proposed 577 

approach successfully interpolated most of the missing pixels over QTP but left a small number of 578 

pixels uninterpolated (e.g., southern QTP on day 92 in 2010). The remaining missing pixels in the 579 

four interpolated LST images for 2010 were 10.75% in spring, 2.45% in summer, 1.74% in autumn, 580 

and 2.00% in winter. This was because the proposed approach interpolated the clear-sky LST 581 

equivalents based on the multiple proximate reference images determined from a 15-d window 582 

centered on the interpolated image. Thus, pixels for which the LST values were missing in both the 583 

interpolated and reference images may not be interpolated. These small data gaps can be effectively 584 

filled by using the conventional geostatistical methods.  585 

Validation was conducted by using the in-situ cloudy-sky LST observations for 2002–2004 at 586 

the four CEOP sites and for 2009–2010 at the two ITP sites (Fig. 10). Overall, the interpolated 587 

results agreed well with the in-situ observations, and the data points were concentrated along the 588 

1:1 line at all the six representative sites. The goodness-of-fit (R2) value between the interpolated 589 

LSTs and in-situ cloudy-sky LSTs varied between 0.59 and 0.81 across all the sites, while the RMSE 590 

values varied between 4.33 and 5.39 ºC, both indicating good interpolation accuracy. Except for 591 

D66-AWS (Fig. 10c) and MS3608-AWS (Fig. 10d), the ubRMSE values were close to the RMSE 592 

values at most sites, indicating minimal systematic errors after the interpolation. Since this approach 593 
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mostly relied on the MODIS data products, the clear-sky MODIS LST performance for QTP 594 

provides the best possible accuracy that this approach can achieve for the cloudy-sky LST 595 

interpolation. Table 3 shows the performance of the clear-sky MODIS/Aqua LST data for QTP as 596 

well as that of our interpolated cloudy-sky results for the same representative sites. The interpolated 597 

cloudy-sky LSTs in SCSG region C were slightly biased with a BIAS value of 2.11 ºC, higher than 598 

the BIAS value of 0.06 ºC under clear skies. The increases in RMSE (from 3.32 to 4.83 ºC) and 599 

MAE (from 2.66 to 3.99 ºC) and a decrease in R2 (from 0.86 to 0.74) also indicated slightly lower 600 

performance for the interpolated cloudy-sky LST than for the clear-sky MODIS LST observations. 601 

The modest degradation in accuracy was ascribed to the use of the cloudy-sky LST samples, that is, 602 

the bias-corrected LSTs in SCSG region D, which performed slightly worse than their clear-sky 603 

counterparts with an MAE value of 3.58 ºC and an R2 value of 0.70 (Fig. 9b), as well as to the 604 

uncertainties introduced by the proposed approach.  605 

To better understand the performance of the interpolation, we compared the interpolation 606 

results to the in-situ measurements at the six representative sites from the perspective of time series 607 

(containing all-weather LSTs under both clear and cloudy skies) (Fig. 11). Overall, the interpolated 608 

time series of this study showed high temporal consistency with the in-situ measurements, and the 609 

interpolated time series successfully reproduced seasonal variations in LST at the six sites (Fig. 11). 610 

In particular, the interpolated LSTs showed close agreement with the in-situ cloudy-sky observations 611 

at many time intervals, such as 1 August to 27 December 2004 at D66-AWS (Fig. 11c), 11 August 612 

to 31 December 2010 at MAWORS (Fig. 11e), and 21 October to 28 December 2010 at NADORS 613 

(Fig. 11f). We also observed some discrepancies in the interpolated time series, as shown in Fig. 11. 614 

For example, an overestimation in the interpolated cloudy-sky LSTs from 1 March to 29 May 2004 615 
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at D66-AWS (Fig. 11c) and an underestimation from 17 June to 27 July 2010 at MAWORS occurred 616 

(Fig. 11e). The MODIS clear-sky LSTs showed similar positive and negative discrepancies from the 617 

in-situ observations for the same time intervals. Therefore, the discrepancies observed in the 618 

interpolated cloudy-sky LSTs were probably due to errors inherent in the MODIS clear-sky LST 619 

data rather than the deficiency of the interpolation approach. There were a small number of data 620 

gaps, such as 28 November 2002 to 3 January 2003 at ANNI-AWS (Fig. 11a) and 14 December 621 

2002 to 1 January 2003 at D66-AWS (Fig. 11c). These data gaps were caused by the missing in-situ 622 

LST data or missing interpolated results due to the failure to locate valid reference images during 623 

the interpolation of clear-sky LST equivalents.  624 

 625 

Fig. 10 Scatter plots showing interpolated cloudy-sky LST values and the corresponding in-situ cloudy-626 

sky LST measurements at the representative LST sites of QTP. The related interpolated pixels were in 627 

region C when the SCSG effect was considered. 628 

 629 
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 630 

Fig. 11 Time series of the all-weather MODIS/Aqua daytime LST values and the corresponding in-situ 631 

LST measurements at the representative QTP sites. The hollow circles indicate interpolated cloudy-sky 632 

LST values, whereas the solid red dots show clear-sky LST observations. Note that data length varied 633 

by site, and some data gaps (shown as long straight lines) existed due to missing in-situ observations or 634 

interpolated results. 635 

 636 

Table 3 Accuracy of the interpolated daytime cloudy-sky results at the representative QTP LST sites as 637 

well as the MODIS/Aqua daytime clear-sky LST data at the same sites used as the reference for 638 

comparison. The metrics were calculated based on data aggregated from all the six representative sites. 639 

Weather condition n RMSE (ºC) MAE (ºC) BIAS (ºC) R2 

Clear sky 1078 3.32 2.66 0.06 0.86 

Cloudy sky 1213 4.83 3.99 2.11 0.74 

 640 

4.4. Comparison with two all-weather LST data products 641 

PTM LST and RTM LST were the two all-weather MODIS LST datasets created by merging 642 
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MODIS/Aqua LST data with the microwave and reanalysis data, respectively, based on different 643 

fusion methods. The interpolated results of this study (the 2nd column of Fig. 12) outperformed the 644 

PTM LST data (rightmost column of Fig. 12) in terms of the spatial patterns and image textures, as 645 

evidenced by the very blurred textures of PTM LST, in particular, in the central QTP areas on the 646 

four arbitrarily selected days. The poor performance of PTM LST regarding the spatial patterns may 647 

be related to the use of AMSR2 data in its algorithm, which has a low spatial resolution (0.1°) and 648 

limited accuracy (Duan et al., 2020). There were also apparent differences between our results and 649 

RTM LST. The interpolated values of this study were lower than those of RTM LST in many regions, 650 

such as northwestern QTP in the images on days 70 (the 1st row of Fig. 12) and 5 (the 4th row of Fig. 651 

12) of 2009, represented by a bluer color in the images resulting from this study. 652 

As shown in Fig. 12, the LST values in some regions were particularly different across the 653 

three LST datasets. We examined two typical subregions (R1 and R2) in detail. Fig. 13 shows the 654 

magnified LST images of the two subregions, with the first and second columns showing the LST 655 

distributions of the three sources in subregion R1 on day 70 and R2 on day 5 of 2009, respectively. 656 

The rightmost column in Fig. 13 shows the LST histograms for subregion R2, excluding glaciers 657 

and lakes. Based on the enhanced details in the two subregions, it was clear that the spatial patterns 658 

of LST in both subregions were poorly characterized by PTM LST (the 3rd row of Fig. 13), as 659 

indicated by the anomalous artifacts appearing in the northeastern part of subregion R1 and the 660 

overall blurry textures in both subregions in the PTM LST images. The interpolated LST values of 661 

this study were lower, characterized by cooler tones (the 1st row of Fig. 13), than the LST values of 662 

RTM LST and PTM LST in both subregions. 663 

Subregion R2 was a small region surrounding glaciers in northwestern QTP, with an elevation 664 
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range of 4659–6275 m a.s.l. In this region, negative LSTs prevailed in winter. Our results 665 

represented the characteristics of negative LSTs in this region on a winter day (the 5th day of 2009). 666 

The median LST value of our result in subregion R2 was -6.63 ºC for the 5th day of 2009 (Fig. 13g), 667 

whereas the those of RTM LST (Fig. 13h) and PTM LST (Fig. 13i) in the same region were 0.76 ºC 668 

and 0.73 ºC, respectively, which were unrealistic.  669 

Table 4 lists the accuracy metrics of these data compared to the in-situ cloudy-sky LST 670 

measurements at the representative QTP sites. Our results outperformed PTM LST in terms of all 671 

the performance metrics. PTM LST showed an overestimation for all the six representative sites 672 

(BIAS = 3.45 ºC), whereas the BIAS value of our results was 2.11 ºC. The percent BIAS (PBIAS) 673 

of PTM LST (25.30%) was higher than that of our results (15.70%). Our results led to the RMSE 674 

(4.83 ºC) and MAE (3.90 ºC) values comparable to those of RTM LST (RMSE = 4.85 ºC; MAE = 675 

3.99 ºC). Our results outperformed RTM LST in terms of the BIAS and PBIAS values, 2.11 ºC and 676 

15.70% in this study compared to 2.38 ºC and 17.90% in RTM LST, respectively. Our results 677 

resulted in a higher R2 value (0.74) than that of RTM LST (0.69). In other words, our results were 678 

in closer agreement with the in-situ cloudy-sky LST observations than RTM LST results. Overall, 679 

these cross-comparisons demonstrated that the interpolated results of this study outperformed the 680 

two existing all-weather LST products in terms of all the performance metrics of spatial distribution 681 

(Fig. 12), seasonal characteristics (Fig. 13), and quantitative evaluation (Table 4). 682 

 683 
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 684 

Fig. 12 Comparison of interpolated results of this study with the two all-weather LST products over 685 

QTP, i.e., RTM LST fused with reanalysis data (Zhang et al., 2021) and PTM LST fused with 686 

microwave data (Xu and Cheng 2021), alongside the original MODIS/Aqua daytime LST images 687 

containing extensive null pixels. Both products are based on the MODIS/Aqua LST data. Four days 688 

(the 70th, 213th, 292nd, and 5th) in 2009 were arbitrarily selected to represent the different seasons of 689 

2009. Two subregions marked as R1 and R2 were further investigated.  690 

 691 
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 692 

Fig. 13 Spatial details of the LST distributions of two typical regions based on the interpolated results 693 

of this study, RTM LST, and PTM LST. R1 and R2 are small regions on the 70th (a-c) and 5th (d-f) 694 

MODIS/Aqua daytime LST images of 2009, respectively, as delineated in Fig. 12. The rightmost 695 

column (g-i) shows histograms of LST in subregion R2, excluding glaciers and lakes.  696 

 697 

Table 4 Accuracy metrics of the interpolated results of this study, PTM LST and RTM LST, versus the 698 

in-situ cloudy-sky LST measurements at the six representative sites of QTP (n = 1213). The numbers in 699 

bold face represent the closest agreement. PBIAS: percent BIAS.  700 

Dataset RMSE (ºC) MAE (ºC) BIAS (ºC) PBIAS (%) R2 
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PTM 5.14 4.23 3.45 25.3 0.63 

RTM 4.85 3.99 2.38 17.9 0.69 

Our study 4.83 3.99 2.11 15.7 0.74 

 701 

5. Discussion 702 

Unlike most existing approaches, the stepwise approach proposed in this study initially 703 

estimated the clear-sky LST equivalents for all the cloud-affected pixels and then recovered the 704 

missing cloudy-sky LST values by accounting for cloud effects based on the SCSG effect. This 705 

framework is flexible enough to accommodate any clear-sky interpolation methods in the first step 706 

(Metz et al., 2014; Neteler 2010; Yu et al., 2015) and any machine-learning algorithms that account 707 

for cloud effects on LST as well as the SCSG-based method in the final step. We demonstrated our 708 

approach over QTP with vast drylands and complex terrains and compared the results with the two 709 

all-weather LST datasets generated from the different data fusion approaches. The results show that 710 

the proposed interpolation approach satisfactorily performed for missing cloudy-sky LST pixels 711 

over a vast and complex terrain although its accuracy was slightly worse than that of the clear-sky 712 

MODIS LST. This was acceptable because the latter provided the highest possible accuracy that 713 

could be achieved by our approach. The proposed approach outperformed the two all-weather LST 714 

datasets in terms of all the performance metrics of image texture, LST seasonality, and quantitative 715 

evaluation. Most strikingly, the proposed approach exhibited a robust ability to handle extensive 716 

missing data, primarily attributed to the use of a similarity-based approach to estimate the clear-sky 717 

LST equivalents in the first step, which made adequate use of spatiotemporal information (Chen et 718 

al., 2021). Thus, the interpolated cloudy-sky LST values leveraged the quality of the clear-sky LST 719 

equivalents to reproduce the LST spatial patterns over the large data-gap regions. Except for the in-720 
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situ data used to correct biases in the LST values on the cloudy-sky pixels in region D, the inputs to 721 

the proposed approach were all from the MODIS family data, without the need for exogenous data. 722 

This feature was beneficial for maximizing the data availability in light of the global coverage 723 

provided by MODIS as well as for reducing uncertainties arising from spatiotemporal scale 724 

mismatches, thus rendering the approach most suitable for regions suffering from heavy cloud 725 

contamination and sparse in-situ monitoring sites.  726 

This study makes innovative use of cloudy-sky pixels with known LST values owing to the 727 

SCSG effect in the same MODIS LST image where the interpolated pixels are located. It is 728 

commonly believed that the presence of LST pixels under cloudy skies in a MODIS LST image 729 

reduces its overall accuracy (Bulgin et al., 2018; Göttsche et al., 2013). Not surprisingly, the official 730 

MODIS LST team planned to completely remove these pixels from LST data products (Wan, 2008). 731 

However, our experiments showed that, although the known cloudy-sky LST pixels identified by 732 

the SCSG effect had negative biases compared to their actual counterparts at the representative sites, 733 

these negative biases could be effectively eliminated and proved to be useful for providing samples 734 

that accounted for cloud effects on LST at the same spatiotemporal scale as the satellite data. We 735 

found a significantly strong correlation between the satellite and in-situ cloudy-sky LST data (R = 736 

0.92). Although a simple linear model appears to be sufficient to achieve acceptable accuracy for 737 

the satellite-based cloudy-sky LST observations, there still remains room for improvement. For 738 

example, we performed bias correction based on the six representative sites of QTP, representing 739 

only two land cover types (bare land and alpine desert) mainly located in northern QTP. Since the 740 

scarcity of the available LST sites in the study area limited the bias correction, the performance of 741 

the bias correction for other land-cover/use types remains to be quantified. The existing negative 742 
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bias in these cloudy-sky data may be related to the current emissivity values in the LST retrieval 743 

algorithm, which are not applicable to cloudy-sky conditions. As such, further studies are needed to 744 

address these issues by improving the algorithms with proper cloudy-sky emissivity parameters as 745 

well as conducting more in-situ observations for different land uses/covers on a global scale. We 746 

urge the MODIS Land Science Team and relevant land surface communities to pay more attention 747 

to the potential of these known cloudy-sky LST pixels rather than simply dismissing them.  748 

These known cloudy-sky LST data, after the bias correction, can be used to compensate for the 749 

scarcity of in-situ cloudy-sky LST observations, in particular, in remote areas without in-situ 750 

observations, and gain insight into the effects of clouds on LST variations. While many current 751 

efforts to validate all-weather LST data heavily rely on in-situ cloudy-sky LST observations, such 752 

an approach is often subject to inconsistencies in the spatiotemporal scale and path of at-sensor 753 

atmospheric transmittance between satellite and in-situ LST observations, with the former being 754 

directional and with the latter being hemispherical. As an alternative to in-situ data, these satellite 755 

cloudy-sky LST data could play a role in validation without these weaknesses. 756 

The proposed approach is not limited to the interpolation of the satellite LST. The presence of 757 

the SCSG effect can also cause problems in the land surface radiation budget. For example, 758 

shortwave downward radiation retrieval may be significantly biased if the SCSG effect is ignored 759 

(Wang et al., 2017). A plausible way to solve the issue may be to remove these affected data and 760 

then apply a similar approach to the one presented in this study so as to interpolate for them by using 761 

unaffected data that can be located through partitioning based on the SCSG effect.  762 

Despite the satisfactory overall performance, the proposed approach still has some limitations 763 

that warrant further investigation. First, uncertainties existed associated with the partitioning of the 764 
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MODIS LST images into the SCSG regions. To reduce them, we performed the pre- and post-765 

processing of the cloud-top height data and the SCSG-partitioned images. Although these treatments 766 

eliminated most of the anomalies, what remained from them in the resulting SCSG images may 767 

have affected the interpolation accuracy. Second, the proposed interpolation framework introduced 768 

uncertainties concerning the estimates of both the clear-sky LST equivalents and cloudy-sky LSTs. 769 

For the cloudy-sky LST estimation, we identified the similar sets of pixels from SCSG region D 770 

based on several environmental predictors under the assumption that these pixels were exposed to 771 

similar cloud effects, and the LSTs of those pixels followed the same prediction model. In practice, 772 

it is likely that the selected similar pixels may not fully satisfy this assumption, depending on the 773 

strength of the selected environmental predictors to define the similarity for the cloudy-sky pixels, 774 

the number of pixels in SCSG region D, and the ability of these pixels to represent heterogeneous 775 

surface conditions (e.g., land use/cover) throughout the study area. Third, this study assumed that 776 

cloud shadows were cast on flat regions, which may not be valid for steep slopes, where cloud 777 

shadow shapes are likely to be altered to some degree compared to orthogonal casting (Qiu et al., 778 

2017). Therefore, a further investigation of the SCSG effects in areas with steep slopes is required. 779 

Fourth, the data quality of the MODIS family products as the inputs to the proposed approach could 780 

be another source of uncertainty in the interpolation results. For example, the MYD11 C6 LST 781 

product has a RMSE value of 2.3K and exhibits large biases (3–5K) over dryland regions, as 782 

reported in several studies (Li et al., 2021; Malakar and Hulley 2016). This type of uncertainty 783 

associated with the original data quality could not be reduced by our interpolation approach. Finally, 784 

the proposed approach was only tested with the MODIS/Aqua daytime LST data, whereas a recent 785 

study indicated that clouds warm the land surface at night (Tan et al., 2021), which warrants an 786 
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investigation of the LST interpolation based on nighttime data.  787 

6. Conclusions 788 

In this study, a stepwise interpolation framework was proposed to recover the missing MODIS 789 

LST values due to cloud contamination by taking advantage of cloudy-sky pixels with known LST 790 

values owing to the SCSG effect. This framework involved the initial estimation of the clear-sky 791 

LST equivalents for all the cloud-affected pixels based on a similarity approach and the subsequent 792 

training of MARS models on the known cloudy-sky LST pixels in SCSG region D and its 793 

application to the prediction of the unknown cloudy-sky LST values of SCSG region C.  794 

These known LST pixels in SCSG region D, shadowed by clouds but observed by satellites, 795 

proved to be useful as they contained information about cloud effects at the same resolution as the 796 

satellite. Given our case study of QTP, the known cloudy-sky LSTs from the MODIS/Aqua LST 797 

dataset were negatively biased by approximately -4.48 ºC but strongly correlated with the in-situ 798 

QTP measurements with satisfactory accuracy (BIAS = -0.09 ºC; R2 = 0.70) after the bias removal. 799 

This confirmed the usability of the LST values in SCSG region D as the samples to account for 800 

cloud effects on LST. 801 

The interpolation results of the four selected MODIS/Aqua daytime LST images of QTP 802 

showed that the resultant textural transitions over large data-gap regions were natural, with no 803 

significant anomalous artifacts, and the LST seasonality was well reflected. When compared to the 804 

in-situ measurements of the representative QTP sites, the interpolated cloudy-sky LST values 805 

resulted in good accuracy (R2 = 0.74; MAE = 3.99 ºC), while, as the reference, the clear-sky LST 806 

values of MODIS/Aqua showed a R2 value of 0.86 and a MAE value of 2.66 ºC. Cross-validation 807 

of the results against the two recently published all-weather LST datasets with the different 808 
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interpolation approaches indicated that the proposed interpolation approach outperformed both in 809 

terms of all the performance metrics of image texture, LST seasonality, and quantitative evaluation.  810 

This study provides a flexible and effective framework for leveraging the existing clear-sky 811 

interpolation algorithms to better estimate the missing satellite cloudy-sky LSTs. It also makes 812 

innovative use of the readily available cloudy-sky LST values in a satellite LST image owing to the 813 

SCSG effect, in particular suitable for areas with sparse in-situ LST-monitoring sites or extensive 814 

missing LSTs. The SCSG effect can be leveraged to produce high-quality all-weather LST data. 815 
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