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H I G H L I G H T S  

• China’s water footprints under 52 combined GCM-SSP-RCP scenarios were assessed and projected. 
• China’s water footprint likely peaks in 2030 and declines thereafter under most scenarios. 
• Emission-mitigation measures significantly impact water footprints of electricity. 
• Projected water scarcity in China will be most severe in 2025–2035. 
• All GCM-SSP2-RCP6.0 simulations show mitigating water stress after 2050.  
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A B S T R A C T   

Future changes in climate and socioeconomic systems will exacerbate water scarcity. Previous studies on China’s 
water footprint and scarcity often consider only climate change or socioeconomic factors in isolation. Here, we 
address these issues by coupling an integrated assessment model, the Global Change Analysis Model, with a 
global hydrological model to project China’s future water footprints and water scarcity, considering both climate 
change and socioeconomic factors. We simulated China’s water footprints under 52 scenarios, which include four 
global climate models (GCMs) and 13 combinations of Shared Socioeconomic Pathway (SSP)–Representative 
Concentration Pathway (RCPs) scenarios. We then projected the intensity of water stress (WSI), defined as a ratio 
of water footprint to renewable water volume, based on the simulations of the SSP2-RCP6.0 scenario. Our results 
align well with statistical data on water footprint variations between 2005 and 2020. China’s water footprints are 
likely to peak around 2030 and then decrease. We find through a scenario matrix analysis that emission- 
mitigation measures will significantly impact the water footprint, particularly in the electricity sector, which 
will become the largest water use sector in the future. This means that the low carbon energy option on China’s 
path to carbon neutrality may aggravate water scarcity. Water stress in China is projected to be greatest in 
2025–2035, and all northern basins will experience water scarcity. Projections based on all GCMs consistently 
show a decline in WSI in China after 2050.   

Practical implications  

Increasing water scarcity is one of the world’s leading challenges, 
threatening economic development and even human well-being. 
Climate change and anthropogenic factors, such as population 

growth, economic development, energy transition and techno-
logical improvements, and water management practices, are 
altering water resources worldwide. As countries take measures to 
combat climate change, it is crucial to consider the effects of these 
actions on future water scarcity. 

In this study, we developed a methodology that integrates both 
climate change and socioeconomic developments into a unified 
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modeling framework. Our approach enables a comprehensive and 
synergetic assessment and projection of future water stress in a 
changing climate context. By using the water footprint approach, 
we were able to simulate multi-sector water use and environ-
mental demand. The global change assessment model framework 
accommodates the synergetic effects of climate change and so-
cioeconomic factors on water scarcity. Our results thus provide a 
link between water management and climate mitigation policies. 
Given the uncertainties in model structure and inputs, we drew 
results through a matrix analysis approach based on an array of 52 
scenarios covering various climate change, socioeconomic 
change, and emission mitigation policy options. 

Our projections show that China’s water stress will be highest in 
the 2025–2035 period, with most northern basins experiencing 
water scarcity. Population decline, implementation of water con-
servation policies, and improvement in water use efficiency 
explain the mitigation of water scarcity across China by the end of 
the 21st century. Comparison between scenarios shows that 
implementation of climate policies is the main cause of differences 
in water footprint across mitigation scenarios. Actions taken to-
wards emission reduction lead to exacerbation of water use in 
several sectors, particularly in the electricity sector. The results 
highlight the importance of considering impacts of climate pol-
icies and socioeconomic factors in water management. The results 
suggest that China’s net-zero emission pledge may pose a greater 
challenge to water management due to the water-intensive nature 
of many low-carbon energy options, such as unconventional liquid 
fuels and bioenergy with carbon capture and storage (BECCS). 
Further water demand resulting from emissions reductions may 
intensify water scarcity and lead to inter-sectoral and regional 
competition for limited water supply. When evaluating emission 
reduction strategies, it is critical to consider whether emission cut 
measures will increase water demand, which may further escalate 
competition among water use sectors. In light of the common 
challenges of water security and the commitment to zero green-
house gas emissions, the findings of this study can provide poli-
cymakers with insights into balancing environmental water 
demands, socioeconomic development, and emissions mitigation 
measures. 

Data availability 

I will share data on figshare and provide a doi to the manuscript.   

Introduction 

Water scarcity is one of the world’s leading challenges, threatening 
economic development and even human well-being. Two-thirds of 
global population (4.0 billion people) suffer from severe water stress at 
least one month per year (Mekonnen and Hoekstra, 2016). According to 
the AQUASTAT dataset, per capita water availability in China is lower 
than half the global average (FAO, 2018). China is facing increasingly 
severe water scarcity, which is an obstacle to economic development 
(Jiang, 2009, 2015). Climate change affects water scarcity by altering 
both water supply and demand. Climate change affects the spatial and 
temporal distribution of water resources, which in turn changes regional 
water availability (Orlowsky et al., 2014). Additionally, changes in 
temperature due to climate change affect water use in irrigation and 
energy sectors (Eom et al., 2012; Konar et al., 2016). In parallel, the 
human impact on water scarcity cannot not be disregarded. Population 
and economic development directly increase water demand, while the 
transition to cleaner energy and advancements in power generation 
cooling methods and irrigation technologies alter water use efficiency. 
Furthermore, water management influences water allocation between 
different sectors and regions (Huang et al., 2021a). At present, many 
countries are acting to combat climate change. To fully assess the im-
pacts of climate change, it is essential to also consider the impacts of 

mitigation actions and human adaptation to changing climate (Men-
delsohn et al., 1994). Consequently, assessments of water stress must 
incorporate the combined effects of both climatic and socioeconomic 
factors (Graham et al., 2020b). 

Population, water availability, and water use are common factors 
used to assess water scarcity. The Falkenmark index (the volume of 
water available per person) (Arnell, 2004; Falkenmark, 1989) and the 
water use–availability ratio (Alcamo et al., 2007; Arnell et al., 2011; 
Graham et al., 2020b) are commonly used to measure water scarcity. 
However, these methods show only supply-side impacts on water scar-
city, without explicit consideration of ecological flow (Liu et al., 2017; 
Schewe et al., 2014). Hoekstra et al. (2012) developed a water footprint- 
based method to measure water scarcity by using the ratio of water 
footprint to water availability. This water footprint approach takes into 
account ecological flows and water use in various sectors, providing a 
comprehensive and reasonable assessment of water stress. The water 
footprint of a product is defined as the amount of water consumed per 
unit of the product in the production process, i.e., the virtual water 
content of the product. The water footprint in a geographical unit is thus 
the sum of the water footprints of all production activities taking place in 
that unit (Hoekstra, 2009; Tian et al., 2018). Water footprints can be 
divided into blue, green, and grey water footprints. In this study, we 
focused on blue water footprints in multiple sectors. 

Most studies on water footprint have focused on historical account-
ing and analysis using statistical data and input–output tables (Xie et al., 
2020; Zeng et al., 2012). Several studies have examined climatic impacts 
and ignored demand-side impacts on water footprint (Konar et al., 2016; 
Orlowsky et al., 2014). Statistical methods are commonly used in 
existing studies to project future water footprints based on identified 
drivers of water footprint such as population and gross domestic product 
(GDP) (Ercin and Hoekstra, 2014, 2016; Xu et al., 2020; Zhang et al., 
2021). This projection approach assumes that the relationship between 
water footprint and socioeconomic factors will remain constant and 
valid in the future, which leads to an inadequate consideration of the 
potential changes in socioeconomic factors such as improvements in 
water use efficiency, human actions and policy adjustments to water 
constraints, and coordination among water use sectors. Recently, system 
dynamics models have been developed to fully account for the influence 
of socioeconomic factors in projecting water footprint by considering 
the interactions among water use sectors and water allocation (Feng 
et al., 2017; Wu et al., 2020). The actual water footprint is affected by 
both supply and demand sides, but previous studies have often over-
looked the constraints imposed by fluctuating water availability. 
Therefore, a water footprint simulation method that fully considers the 
synergetic impacts of socioeconomic factors and climate change is 
needed to better project the future water footprint. 

The Global Change Analysis Model (GCAM) is an integrated assess-
ment model based on market-equilibrium theory. GCAM integrates so-
cioeconomics, energy system, land-use change, climate, and water 
sectors, and provides a mechanism for considering the impacts of so-
cioeconomic factors on water footprint and the interaction between 
human society and the climate system. In this study, we linked GCAM to 
a global hydrological model to implement the constraints imposed by 
the limited supply of natural water resources. We then created 52 sce-
narios representative of various climate change, socioeconomic change, 
and emission mitigation policy options, simulated and evaluated water 
footprint and water scarcity in China through this integrated simulation 
approach to accommodate the synergetic effects of climate change and 
socioeconomic factors. 

Data and method 

Models and dataset 

In this study, the water footprint during 2005–2100 was simulated 
by integrating GCAM and Xanthos. GCAM is an integrated assessment 
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model based on market-equilibrium theory that includes five modules 
for socioeconomics, energy, land-use, climate, and water (Calvin et al., 
2019). The energy, land-use, and socioeconomics modules calculate the 
demand for various products and services, and the water module sim-
ulates the corresponding water demand in six sectors, including irriga-
tion, electricity generation, industrial manufacturing, mining, livestock, 
and domestic uses (Kim et al., 2006). The climate module converts 
radiative forcing into global average temperature, sea-level rise, and 
other climatic variables, with CO2 and other greenhouse gas emissions 
from other modules as inputs. These climatic outputs interact with non- 
climatic modules, where, for example, decreased temperature can result 
in growing building heating demand and consequently increasing en-
ergy water demand. Through this complex interaction, GCAM provides a 
more accurate representation of the impacts of both climate change and 
human activities on water use. GCAM tracks both withdrawals and 
consumption for each water-use sector (Hejazi et al., 2013). Since actual 
water use is jointly determined by supply and demand, GCAM constructs 
a water market to price the balance of water demand and supply at a 
basin level (Kim et al., 2016). GCAM employs cost resource curves for 
each basin to determine the share of each of three water sources (e.g., 
freshwater, groundwater, and desalinated seawater). Typically, surface 
water is consumed first because it is the cheapest source of water. We 
used the streamflow simulated by Xanthos as a constraint for surface 
water availability in a basin. After this renewable water supply is fully 
depleted, GCAM uses water from the other two sources depending on 
their relative price. The price of nonrenewable groundwater increases as 
the volume pumped grows due to the cost of installing and operating the 
well. Once the price of groundwater rises, desalination becomes more 
competitive, leading to wider use of desalinated water. GCAM version 
5.3 was used in this study and operated in five-year increments with a 
historical calibration period of 1990–2015 and 2020 as the first pro-
jection year. 

We used the Xanthos v2.3.1 global hydrological model to simulate 
basin water availability for historical time periods and future climate 
change scenarios. Xanthos is an open-source hydrological model 
developed at the Joint Global Change Research Institute of the Pacific 
Northwest National Laboratory and written in Python. It is a simplified 
global hydrological model whose predicative power has been demon-
strated in previous studies (Liu et al., 2018). Xanthos divides the global 
land extent into 235 basins and runs monthly with a spatial resolution of 
0.5 geographic degrees (Li et al., 2017; Vernon et al., 2019). The model 
uses the Penman-Monteith method for potential evapotranspiration, the 
abcd model for runoff, and the Modified River Transport Model for 
streamflow routing. Xanthos calculates accessible water supplies for the 
235 GCAM basins. 

GCAM inputs include data and parameters for historical and future 
time periods. For the history simulation, the GCAM data system begins 
with country-level inventory data on energy production and consump-
tion, agricultural production and consumption, land use and land cover, 
water demand, and emissions. Data and parameters for future periods 
consist of population (Samir and Wolfgang, 2017), GDP and energy 
(Dellink et al., 2017), policy and technological assumptions (O’Neill 
et al., 2017), water efficiency, and technological innovations (Graham 
et al., 2018). Monthly meteorological data on a global 0.5◦×0.5◦ grid for 
the historical period (1950–2005) and future simulations (2006–2100) 
come from four GCMs (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, 
MIROC5) in the Inter-Sectoral Impact Model Inter-comparison Project 
(ISIMIP). The meteorological data include key variables such as pre-
cipitation, mean temperature, minimum temperature, longwave radia-
tion, shortwave radiation, wind speed, and relative humidity, which are 
critical in assessing the climatic impacts on water supply. ISIMIP is a 
subset of the World Climate Research Programme Coupled Model 
Intercomparison Project -Phase 5 (CMIP5) simulations. The GCMs con-
tained in ISIMIP have a wide coverage of the uncertainty in temperature 
and precipitation changes projected by 36 CMIP5 GCMs, when 
compared to otherwise randomly selected GCM subsets (McSweeney 

and Jones, 2016). The ISIMIP meteorological dataset has thus been used 
extensively in various studies investigating climate change impacts on 
water resources (Boulange et al., 2021; Prudhomme et al., 2014; Rein-
ecke et al., 2021; Schewe et al., 2014). Uncertainties associated with 
climatic inputs and scenario assumptions are discussed in the limitations 
section. 

We used a spatial downscaling algorithm to obtain basin-wide water 
footprints using population and livestock density maps (Huang et al., 
2018; Li et al., 2018). The global population density maps were obtained 
from the Historical Database of the Global Environment for the period of 
1970–1989 and the Gridded Population of the World from the Socio-
economic Data and Application Center for the period 1990–2010, and 
used for spatial downscaling of four non-agricultural sectors. The grid-
ded global maps of livestock in 2005, produced by the Food and Agri-
culture Organization’s Animal Production and Health Division, were 
used to downscale livestock water withdrawal. To validate the simulated 
water footprints, national and provincial water use and withdrawal data 
in China were extracted from the 2005, 2010, 2015 and 2020 China 
Water Resources Bulletins (Ministry of Water Resources of China, 2005, 
2010, 2015, 2020a). 

Study area 

The total volume of renewable internal freshwater resources in China 
is about 281.3 km3 per year, ranking fifth behind Brazil, Russia, Canada, 
and Indonesia (FAO, 2018). China’s annual per capita water availability 
is about 1946 m3, less than half of the global average (FAO, 2018). The 
distribution of water resources in China is uneven, with the North-South 
divide expected to worsen due to climate change (Wang and Zhang, 
2015). Despite northern China accounting for 65% irrigated land and 
45% population, it only has access to 19% of annual renewable water 
resources. In addition, the rapidly growing population and urbanization 
in China have led to higher water demand in recent decades. 

After spatial discretization and naming in GCAM, we delineated 22 
river systems encompassing China’s territory as the study area (Fig. 1), 
with 18 of them draining into oceans and four being interior basins. 
Among them, 11 river systems that lie entirely within China, including 
the North Coast of the Bo Hai – Korean Bay (i.e., the Liaohe river basin), 
Interior Ziya He (a tributary of the Haihe River), Huang He (i.e., the 
Yellow River basin), Interior Tarim, Interior Plateau of Tibet, Yangtze, 
Xun Jiang (the middle reaches of the West River, which is the main-
stream of the Pearl River), South China Sea Coast (the Pearl River delta, 
which forms the Pearl River drainage basin by joining with the Xun 
Jiang basin), the Eastern Coast of China (including the Huai River basin 
and the southeast rivers), Taiwan (excluding Taiwan Island in this 
study), and Hainan. These 22 systems also include 11 transboundary 
basins, i.e., the Hong (Red River), Mekong (Lancang River), Salween, 
Irrawaddy, Ganges–Brahmaputra (Yarlung Tsangpo River), and the 
Indus in southern China, the Amur River (Heilong River) in northeastern 
China, South East Coast of Russia on the northeast coast, Ob River (Ertzis 
River) in western China, Lake Balkhash, and Interior Gobi in northern 
China. For these transboundary basins, we applied an area-weighted 
method to determine the water footprint and water supply within China. 

Scenario design 

In this study, RCP8.5 was not included in this study due to its un-
attainable emission target in the GCAM. Simulated streamflow can vary 
significantly between GCMs, as demonstrated in previous studies (Munia 
et al., 2020; Schewe et al., 2014). To account for this uncertainty, we 
used four GCM datasets (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, 
and MIROC5) from ISIMIP-2b (Frieler et al., 2017) for RCP2.6, RCP4.5, 
and RCP6.0 emission scenarios to project climate change impacts on 
water resources. 

Future socioeconomic scenarios were constructed based on five SSPs 
and simulated using GCAM. The SSPs include sustainable development 
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(SSP1), middle-of-the-road development (SSP2), regional rivalry (SSP3), 
inequality (SSP4), and fossil-fueled development (SSP5) with varying 
degrees of challenge for climate change mitigation and adaptation. The 
SSP assumptions comprise qualitative narratives of resource availability, 
technology developments, and demand drivers such as lifestyle changes, 
as well as associated quantitative descriptions such as population, eco-
nomic growth, and urbanization (Riahi et al., 2017). However, the SSPs 
were developed without explicit assumptions for the water sector. To 
assess the impact of technological advancement on water footprint, we 
added assumptions for the water sector following Graham et al. (2018). 
Qualitative and quantitative assumptions for the future in the water 
sector include technological advancements and associated efficiency 
changes in irrigation, electricity generation, industrial manufacturing, 
and domestic use (Graham et al., 2018). Aligning with economic growth 
and sustainability assumption in the SSP storylines, SSP1 and SSP5, 
SSP2 and SSP4, and SSP3 have high to low rates of water technological 
development. Water-saving cooling systems like dry-cooling are priori-
tized in electricity sectors. The technological change rate in the 
municipal and industrial sectors varies across SSPs and regions differing 
in income level. There are no technological changes in primary energy 

production and livestock water withdrawal. The specific quantities of 
withdrawal changes can be found in the work of Graham et al. (2018). 
Based on demographic and economic drivers and technological im-
provements, we projected the trajectories of energy use, land use, 
greenhouse gas emissions, demand for various products and services, 
and water consumption and withdrawals under various socioeconomic 
scenarios by employing GCAM’s intersectoral connections and feed-
backs. For example, regional population and labor productivity as-
sumptions drive the energy and land-use system to produce, transmit, 
and deliver energy services, as well as crop and forest products, which in 
turn drives water demand. 

Our study produced a total of 52 scenarios based on 13 valid SSP-RCP 
combinations (Fig. 2) using four GCM outputs. Due to their inability to 
meet the RCP6.0 emission target by GCAM, we excluded SSP and SSP4 
for RCP6.0. Prior to performing the simulations, we had to ensure that 
the climate change targets in GCAM aligned with the RCP climate targets 
for Xanthos, which simulated water availability under different climate 
change trajectories. To this end, we introduced Shared Policy Assump-
tions (SPAs) which include mitigation and adaptation policies. These 
assumptions consist of a set of qualitative and quantitative assumptions 

Fig. 1. Division of the 22 river systems encompassing China’s territory as the study area. In addition to 11 river basins entirely within China, 11 transboundary river 
basins (1–4, 6, 11, 16, 17, 20–22) are included, with only the China’s parts being considered in this study. The analysis excludes Taiwan Island. 

Fig. 2. Scenario matrix consisting of 13 valid com-
binations of the Shared Socioeconomic Pathway (SSP) 
and Representative Concentration Pathway (RCP). 
Based on the Global Change Analysis Model (GCAM) 
simulations, SSP1 and SSP4 cannot achieve the 
RCP6.0 emission target. A total of 52 scenarios were 
created by linking each SSP-RCP combination to four 
global climate models (GCMs), each providing a 
possible future climate pathway. Each combined sce-
nario requires varying degrees of climate policy 
implementation effort to meet the emission target.   
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about international cooperation and regional distribution of mitigation 
efforts (Kriegler et al., 2014). By incorporating SPAs into our study, we 
ensured that the climate change level in both GCAM and Xanthos was 
consistent. The SPAs vary with the SSPs. SSP1 and SSP4 require low 
mitigation challenges, SSP5 and SSP3 with high energy intensity require 
higher mitigation efforts, and SSP2 intermediate mitigation cost 
compared to the other SSPs (O’Neill et al., 2017). The adoption of SPAs 
facilitates the mitigation scenarios of SSPs in GCAM to reach the same 
radiative forcing target of RCPs in 2100 in valid combined SSP-RCP 
scenarios, allowing both GCAM and Xanthos to simulate under a same 
CO2 rising level by the end of 2100. In GCAM, climate policies are 
enforced by levying a tax on greenhouse gas (GHG) emissions as an 
implementation of the SPA. GCAM calculates the total GHG emissions of 
each sector subject to the emissions tax, while the climate module de-
termines the corresponding radiative forcing values. GCAM then adjusts 
the tax amount to find the least cost path to reach the climate target. The 
start year of the GHG emissions tax varies by SSP, with the tax starting in 
2025 in the SSP1 and SSP4 scenarios and in 2040 in the rest SSP sce-
narios. Beyond taxation, emissions-cutting actions in GCAM also include 
energy system transformation, such as promoting low-carbon energy (e. 
g., wind, hydropower, and nuclear), afforestation/reforestation, and 
reducing the GHG emission intensity of agriculture. We collected radi-
ative forcing in 2100 under five SSP baseline scenarios from Calvin 
(2017) (5.6 W/m2 in SSP1 baseline, 7.5 W/m2 in SSP2 baseline, 7.2 W 
/m2 in SSP3 baseline, 6.4 W/m2 in SSP4 baseline and 8.4 W /m2 in SSP5 
baseline). By comparing the baseline radiative forcing and the RCP 
target, we can roughly estimate the difficulty of attaining the target 
prescribed in each combined SSP-RCP scenario through mitigation 
measures. For example, among SSP3 scenarios, SSP3-RCP2.6 requires 
higher mitigation costs than SSP3-RCP4.5 or SSP3-RCP6.0. 

We investigated the impacts of climate policy and climate change on 
water footprint with the aid of scenario matrix. It is important to note 
that not all of scenarios have equal probability of occurrence, as those 
with high mitigation cost are less likely to occur. As shown in Fig. 2, each 
column of the matrix represents scenarios with different RCP targets 
under the same SSP assumptions, with variations within each column 
reflecting the impacts of both mitigation measures and climate change 
on water footprint. Each row of the matrix represents scenarios under 
different SSPs with the same RCP, with variations within each row 
indicating the socioeconomic contribution to water footprint. 

Water footprint and water scarcity indicator 

Water footprint is used to evaluate water consumption. The water 
scarcity index (WSI), defined as a ratio of water footprint and accessible 
water volume, is used to assess water stress. The accessible water vol-
ume, based on the Xanthos simulation, is the minimum value between 
the streamflow and the sum of the baseflow and reservoir storage (Kim 
et al., 2016). The amount of water needed to maintain ecological use, 
known as the environmental flow requirement (EFR), was estimated to 
be 10 % of the monthly mean natural streamflow (Kim et al., 2016) and 
was subtracted from natural streamflow in each basin. The total reser-
voir storage volume for each basin was taken from the Global Reservoir 
and Dam Database (Lehner et al., 2011), and the volume was assumed 
constant over time in this study. The accessible water volume in each 
basin was then used as a constraint on water supply in GCAM (Graham 
et al., 2020b). 

The national water footprints include the water footprints of two 
agricultural and four non-agricultural sectors. In this study, we followed 
the definitions of water consumption and water withdrawals of Hejazi 
et al. (2014) to reconcile with GCAM. The non-agricultural water foot-
print refers to water consumption in four sectors: electricity generation, 
industrial manufacturing, mining, and domestic use (Mekonnen and 
Hoekstra, 2016). The agricultural water footprint refers to water with-
drawals for irrigation and livestock. To facilitate evaluation of future 
progress in water use efficiency, we define water footprint in 

agricultural sectors on the basis of water withdrawals, which are the 
water diverted or withdrawn from a surface water or groundwater 
source. Compared to water withdrawals, agricultural water consump-
tion accounts for crop evapotranspiration and livestock consumption, 
but ignores other water losses such as irrigation evaporation and those 
during transport, resulting in an underestimation of agricultural water 
footprint and a failure to account for technological advances in water 
use efficiency. However, one potential drawback of using water with-
drawals is a lack of consideration of return flows, which are very difficult 
to track. To mitigate this effect, we subtracted a minimal amount of EFR 
from the denominator of WSI when evaluating water stress. 

By linking GCAM and Xanthos, we simulated national water with-
drawals and consumption for the six sectors at a 5-year time step over 
the period of 2005–2100, as well as water withdrawals for irrigation at 
the basin level. Water withdrawal for irrigation in each basin is 
considered as the agricultural water footprint, national water with-
drawal for livestock is considered as the national livestock water foot-
print, and national water consumptions for electricity generation, 
industrial manufacturing, mining, and domestic sector are considered as 
national water footprint of each sector. The national water footprints of 
six sectors are aggregated to obtain the water footprint in China. For the 
non-agricultural and livestock sectors (i.e., electricity generation, in-
dustrial manufacturing, mining, and domestic uses), gridded water 
footprints (0.5◦) were first obtained by downscaling national footprints 
of those sectors based on population or livestock density maps, and then 
aggregated to obtain basin-wide water footprints for the respective 
sectors (Li et al., 2018). 

A basin is considered to be affected by water stress if the WSI value is 
greater than 0.4, i.e., the water footprint exceeds 40% of the accessible 
water resources (Falkenmark et al., 2007). Among all the valid SSP-RCP 
scenarios, SSP4-RCP2.6, SSP5-RCP2.6, and SSP5-RCP4.5 are unusual 
because of the high costs associated with achieving stringent climate 
goals, as reflected by the large gaps between SSP baseline estimates of 
radiative forcing and RCP targets. SSP2-RCP6.0 is a scenario with 
minimum mitigation costs (Fricko et al., 2017; van Vuuren et al., 2014). 
In SSP2 (“Middle-of-the-road”) scenarios, future socioeconomic condi-
tions evolve along the current pathway, such as steady population and 
economic growth and fixed energy and fuel preferences. The SSP2- 
RCP6.0 scenario is frequently used to assess water scarcity in existing 
studies (Huang et al., 2021a). Thus, we also focused on the results of the 
SSP2-RCP6.0 scenarios to facilitate comparisons with other studies. 

The simulated national water footprints were verified with statistical 
data from the China’s water resources yearbooks. In addition, the 
downscaled water footprints of a 0.5◦ resolution were aggregated to the 
provincial level and compared with provincial statistical data. 

Results 

Changes in China’s water footprint 

The national water footprint in China, calculated as the mean of all 
scenario simulations, has increased over the historical period 
(2005–2015) in a similar trend to the statistical data, with a Pearson 
correlation coefficient of 0.96 and a mean absolute percentage error of 
about 6.0% relative to the statistical data (Fig. 3a). While the simulation 
results in 2005 underestimated the national water footprint by about 
10.3%, the simulated water footprint in 2020 was 14.2% higher than the 
statistical data. Our model did not account for many unexpected factors 
that together resulted in a reduced water consumption in industry, 
agriculture and households in 2020, such as the effects of COVID-19 
pandemic and a 10% increase in annual precipitation compared to the 
multi-year average (Ministry of Water Resources of China, 2020b). It is 
intriguing that our simulation shows a steady increase in national water 
footprint over the 2005–2020 period, whereas statistical data show a 
peak in 2013. Zhao et al. (2021) have raised doubts about the validity of 
the turning point in 2013, given that China’s water consumption did not 

Y. Sun et al.                                                                                                                                                                                                                                      



Climate Services 30 (2023) 100385

6

reach a peak in that year referring to economic development. Their 
study suggested that the total water use in China would likely reach its 
maximum in 2035–2040. The reasons behind the occurrence of the 
turning point in 2013 are multifaceted (Zhao et al., 2021). One possible 
reason is related to statistical methodology. In 2010–2012, China con-
ducted the first national water census and reported an industrial water 
consumption of 120.3 km3 in 2011. This was 25.9 km3 lower than the 
industrial water consumption in the China Water Resources Bulletin for 
the same year. As a result, the statistical data of the bulletin was cor-
rected from 2012 onwards by a bias correction procedure. In 2012, a red 
line was set for water resource use in China, imposing a cap of 700 km3 

by 2030. While this regulation encourages the development and appli-
cation of water saving technologies, it can also provide incentives for 
local authorities to report less than their actual water consumption. 

On average across all scenarios, China’s simulated water footprint 
increased from 378.7 ± 2.4 km3 (with a 95% confidence level, CL) in 
2005 to a maximum of 501.2 ± 6.1 km3 (95% CL) and later decreased to 
289.4 ± 13.2 km3 (95% CL) in 2100 (Fig. 3c). However, the magnitude 
and timing of the maximum water footprint varied for individual SSPs, 
with maxima ranging from 460.9 km3 to 525.6 km3 across all 52 sce-
narios (Fig. 3c). In particular, under the SSP5 scenarios, the national 
water footprint peaks in 2035–2050, while the peak values under all 
scenarios except SSP5 are likely to occur before the 2030 s. Under the 
SSP1 scenarios, the water footprint peaks as early as the 2010 s. In the 
SSP2, SSP3, and SSP4 scenarios, the water footprint peaks in 
2020–2025. In SSP3 and SSP5, the water footprint peaks at over 500 
km3. High energy demand and steady GDP growth contribute to the 
delayed and higher peak under the SSP5 scenarios. The high population 

in SSP3 also results in a high peak water footprint. The peak values are 
relatively lower in the SSP2 and SSP4 scenarios, with a value of about 
491.9 km3. The lowest peak value appears in the SSP1 scenarios (460.9 
km3). The decrease in water footprint after the peak is likely due to 
population decline, which is an input variable for GCAM. China’s water 
footprint in 2050 is either lower than or closer to the water footprint in 
2010 under all but the most energy-intensive SSP5 scenarios (SSP5- 
RCP2.6, SSP5-RCP4.5, SSP5-RCP6.0) and the RCP2.6 scenarios with the 
lowest emissions (e.g., SSP4-RCP2.6 and SSP2-RCP2.6) (Fig. 3b). In 
contrast, Xu et al. (2020) arrived at the opposite conclusion that the 
water footprint in 2050 is much higher than in 2010 under all SSP1-5 
scenarios. The disparity can be attributed to the fact that Xu et al. 
(2020) considered only socioeconomic factors without natural water 
constraints. 

As shown in Fig. 3c, the water footprints under the same SSP as-
sumptions (e.g., SSP2-RCP2.6, SSP2-RCP4.5, SSP2-RCP6.0) begin to 
diverge after the introduction of a GHG tax. In GCAM, the baseline year 
for GHG taxation is 2040 in SSP2, SSP3, and SSP5, and 2025 in SSP1 and 
SSP4. The divergence suggests that climate policy implementation is the 
main reason for the differences in water footprints under the same SSP 
assumptions. According to our simulation, the scenarios with stringent 
climate targets (such as RCP2.6) lead to high water footprints in the 
GHG-taxed years (Fig. 3b, Table A.1). Under the same SSP, the simulated 
water footprints in the RCP2.6 scenarios are higher than those in the 
RCP4.5 scenarios by 2080, and in both the RCP2.6 and RCP4.5 sce-
narios, they are significantly higher than those in RCP6.0. For example, 
under the same SSP5 settings, the water footprint in the SSP5-RCP2.6 
scenario is over 100 km3 larger than those under the other SSP5-RCP 

Fig. 3. Simulated national water footprints (WF) in China during 2005–2100 under SSP1-SSP5. (a) Bar chart showing the simulated national WF and the WF from the 
statistical data in 2005–2020. The gray bars represent the mean of 52 simulations results, and the error bars represent a 95% confidence. (b) Differences in water 
footprint between 2050 and 2010 under 13 SSP-RCP combined scenarios. This subplot is to contrast with the results from Xu et al. (2020) which also calculated the 
differences over this time interval. For each SSP-RCP scenario, the mean value is plotted based on four GCMs. (c) Changes in China’s annual water footprints based on 
the simulation results under the total 52 scenarios. The solid lines show the mean values and the shaded band shows the range of all GCM-RCP simulations under 
each SSP. 
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scenarios. This large difference in water footprint is in line with the 
assumption that achieving an RCP2.6 target in SSP5 requires high 
mitigation costs (Kriegler et al., 2017). The water footprint in SSP4- 
RCP2.6 is also larger than that of SSP4-RCP4.5 by about 50 km3 for 
the period of 2055–2095, which is half the difference observed in the 
corresponding SSP5 scenarios. Note that the water footprint in SSP4- 
RCP4.5 is ranked as the fourth highest of all RCP4.5 scenarios, while 
the water footprint in SSP4-RCP2.6 is ranked as the second highest of all 
five RCP2.6 scenarios. Therefore, lower mitigation costs are required 
under SSP4 to achieve the RCP4.5 emissions target than under the other 
SSP scenarios, but costs increase substantially to achieve the RCP2.6 
target under SSP4, as also noted in Calvin et al. (2017). 

China’s water footprint by sectors 

Similar growth and drawdown trajectories of water footprint in 
China are projected under all scenarios for the 21st century, but the 
causes behind them are different. The late decline in national water 
footprint in all SSP scenarios except SSP3 is mainly due to the reduction 
of water footprint in the industrial and domestic sectors, while the 
decline in SSP3 is caused by the reduction of water footprint in the 
electrical and domestic sectors (Fig. 4). The projected water footprints 
by sectors for all scenarios are presented in Table A.2. In 2005, water 
footprints in irrigation, industry, domestic use, and electricity sectors 
account for about 90% of the national water footprint. In most scenarios, 
the share of the water footprint for electricity generation and irrigation 
increases over time, while the share of the water footprint for industry, 
domestic use, livestock, and mining decreases. By 2100, irrigation, 
electricity, and industry become the most important sectors of the water 
footprint. The water footprints in the livestock, domestic use, and 
mining sectors increase and then decrease, reaching a reversal point in 
2015, 2020, and 2035, respectively. 

The domestic water footprint decreased since 2015 in SSP3 sce-
narios, despite the peak population expected in 2030. This indicates the 
positive impact of technological advances on offsetting the increase in 
water demand resulting from population growth. Similarly, in SSP1 
scenarios where population peaked in 2020, the domestic water foot-
print peaked as early as 2015. Zhou et al. (2020) have also emphasized 

the role of technological advancement and water conservation measures 
in offsetting the increase in the water demand resulting from socioeco-
nomic development. Interestingly, despite the different population 
projections in SSP1 and SSP3, both scenarios exhibit a declining trend in 
domestic water footprint during 2030–2100 (Fig. 4), highlighting the 
critical role of technological improvement in driving down the domestic 
water footprint. However, by 2100, the domestic water footprint in SSP3 
remains larger than that in SSP1, though with a diminishing difference 
(Table A.2). This implies that population continues to exert influence on 
domestic water footprint. 

The irrigation, industry, and electricity sectors are the primary 
drivers of variation in water footprints across the different SSPs. In most 
scenarios, irrigation water footprints grow until 2030 and drop there-
after. In SSP3, the irrigation water footprint grows steadily and reaches 
160 km3 in 2050, which is 60% higher than other scenarios in the same 
year. This high irrigation water footprint is attributed to the large 
population and slow advancement in irrigation efficiency in SSP3 
assumed in GCAM. In particular, China’s population in SSP3 is nearly 
twice that in SSP1 by 2100. The industrial water footprint is projected to 
grow through 2030 before declining in most scenarios, albeit peaking in 
the 2010s in SSP1. The water footprint for electricity generation varies 
significantly by SSP. It increases substantially over time in the SSP2, 
SSP4, and SSP5 scenarios, whereas in SSP3 it tends to decrease. For the 
three remaining sectors (i.e., livestock, domestic use, and mining), water 
footprints are of a similar magnitude across the five SSPs. Across all 
sectors, the water footprint in 2100 is smaller than in 2005, except for 
the electricity sector. 

Upon examining the simulations for the same SSP (column-wise in 
Fig. 4), one can see that the water footprint response to each climate 
change mitigation target varies by sector, with the electricity sector 
contributing the most, followed by the irrigation and industry sectors. 
The water footprints of the three remaining sectors (i.e., livestock, 
mining, and domestic use) are almost identical across the different 
climate mitigation scenarios (Fig. 4). The difference between SSP4- 
RCP2.6 and SSP4-RCP4.5 in the total water footprint is +41.7 km3 in 
2100, while the difference in water footprint for electricity generation is 
+45.2 km3. Similarly, the total water footprint difference between SSP1- 
RCP2.6 and SSP1-RCP4.5 is +67.1 km3, with electricity accounting for 

Fig. 4. Projected national water footprints by sector across 13 SSP-RCP scenarios. SSP1-RCP6.0 and SSP4-RCP6.0 are invalid scenarios as the RCP6.0 emissions target 
in SSP1 and SSP4 cannot be achieved by GCAM. The water footprints shown in the subplots are averages based on four GCMs associated with each SSP-RCP scenario. 
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+59.4 km3. The water footprints in the electricity and irrigation sectors 
appear to be larger under the stringent climate policy scenarios (RCP2.6 
and RCP4.5). However, the industrial sector shows a contrasting result, 
with a small water footprint under the stringent climate policy scenarios. 

China’s future water scarcity trend 

We estimated future water scarcity in China based on simulations 
under the four SSP2-RCP6.0 scenarios applying different GCM climate 
projections. The percentage changes in WSI averaged over the four GCM 
projections are shown in Fig. 5. It shows that the national WSI initially 
increases and later decreases during the study period (2005–2100). The 
average national WSI is 0.286 in 2005 and about 0.345 in 2020–2035. 
Subsequently, it falls steadily to 0.184 by 2100, indicating a reduction in 
water stress in China compared to 2005. Based on estimates, most basins 
will experience their peak water stress in 2035. Fig. 5 shows that in the 
Amur and Huang He basins, WSI is likely to peak in 2020, while in the 
Yangtze basin and the interior Ziya He basin, it is likely to peak in 2025. 
The Xun Jiang basin and South China Sea Coast will reach their peak 
WSI around 2030, while the Eastern Coast of China will continue to 
experience an increase until it peaks in 2055. The most severe water 
scarcity in China varies in terms of timing and intensity across the GCM- 
SSP2-RCP6.0 scenarios. The national average WSI peaks at 0.365 in 
2035 for GFDL-ESM2M, 0.350 in 2030 for MIROC5, 0.350 in 2025 for 
HadGEM2-ES, and 0.377 in 2025 for IPSL-CM5A-LR. In other words, the 
most severe water stress in China will occur in 2030s, with a national 
average WSI of 0.360 ± 0.010 (95% CL). It is worth noting that all four 
GCM-SSP2-RCP6.0 simulations consistently show that water stress at the 
national scale in China will steadily decrease after 2050. For a detailed 
view of the estimated WSI trajectories in all 22 basins in China and the 
national mean, the reader is referred to Fig. A.1. 

In general, water stress in China is highest around 2035 under the 
SSP2-RCP6.0 scenarios (Fig. 6). In 2035, most northern basins experi-
ence water shortage, and the WSI values of five northern basins exceed 
0.4, including the interior Ziya He basin (2.13), Huang He basin (0.87), 
East China Coast (0.78), Liaohe river basin (0.5) and the interior Gobi 
(0.47). In particular, the water footprint in the interior Ziya He basin is 
more than twice the available water in the basin. In addition, water 
stress in the South China Sea Coast (0.38) is higher than the national 
average (0.33) in 2035, and these five northern basins will continue to 
face water scarcity in mid-century. By 2075, water scarcity will no 
longer exist in the interior Gobi and Liaohe river basin. By the end of the 
century, the nationwide mean WSI will drop to 0.19, but three basins 
will still surfer water scarcity: the interior Ziya He basin (1.25), East 
China Coast (0.56), and the Huang He basin (0.47). 

Almost all basins experienced intensified water scarcity under the 

SSP2-RCP6.0 scenarios during the historical period (2005–2015) 
(Fig. 6d). The WSI change rates in the interior Ziya He basin, Bo Hai and 
Huang He basins were all less than 10%, while other basins experienced 
a change rate of more than 10%, such as the Yangtze (22.8%), Indus 
(44%), and interior Gobi (39%). Half of the 22 basins are likely to 
receive moderate reductions in water stress, with a rate of change less 
than 5% over the 2015–2035 period (Fig. 6e). By contrast, some basins 
are exposed to even more severe water stress over this period, with an 
increase of about 10% in WSI, such as the East China Coast, Pearl River, 
Bo Hai. In all basins, water stress will decrease in 2100 compared to 
2035, with a decreasing rate of change close to or above 30% (Fig. 6f). 
The negative changes in WSI will be more than 50% between 2035 and 
2100 in Interior Tarim, and Interior Plateau of Tibet. It’s worthy to note 
that in these basins, the WSI remain below 0.1 in all scenarios, due to the 
small water footprints resulting from the low levels of production and 
population in these areas of our study. 

Discussion 

Comparison with previous studies 

Our analysis shows that the water footprint in China is likely to peak 
around 2030 and then decline as simulated under most scenarios, which 
is consistent with the results of previous studies on water use in China. 
For instance, Zhao et al. (2021) projected that total water use in China 
would reach a turning point in 2035–2040, due to demand-side eco-
nomic development and water management such as improved water 
efficiency, conservation measures, and water supply constraints. A 
recent study based on historical water use data in China also supports 
the future declining trend in water use, noting that both technological 
advancement and water conservation measures offset the increase in 
water demand caused by socioeconomic development (Zhou et al., 
2020). However, there is still no consensus on the future trend of na-
tional water footprints. Xu et al. (2020) reported that the national water 
footprint in China would increase significantly in the future for all five 
SSPs throughout 2010–2050. Our study differs from Xu et al. (2020) in 
that we considered water supply constraints and water efficiency im-
provements, which Xu et al. did not. On the other hand, based on the 
statistical data, some studies suggested that water consumption would 
continuously decline in the future. Zhang et al. (2021) inferred from the 
historical water use data that China’s water consumption crested in 
2013 and would continuously decrease in the period 2013–2030 by 
using the Logarithmic Mean Divisia Index method and the Monte Carlo 
method, but the reliability of their findings was questioned due to un-
certainty around the peak in 2013 according to Zhao et al. (2021). More 
importantly, the statistical method has limitations as it relies on the 

Fig. 5. Percent changes in water scarcity index (WSI) relative to the 2005 level, both nationwide and in seven basins with the highest WSI values over 2010–2100. 
The values are averages based on four SSP2-RCP6.0 scenarios with different GCM projections. The bars specify the year of the occurrence of the highest WSI values of 
the basins in the corresponding colors. 
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relationship between water use and factors like economic development 
and historical industrial structures. It often overlooks the intricate in-
teractions between socioeconomic factors and water use. Moreover, this 
method assumes a constant relationship that may not hold true in the 
future, which could impede its ability to project future water use. 

Our simulated water scarcity states in China for 2005 and 2010 align 
with previous studies (Ge et al., 2016; Greve et al., 2018; Liu et al., 
2017). Several studies have used GCAM to assess future global water 
scarcity in light of various climatic and socioeconomic factors (e.g., 
Graham et al., 2020a; Huang et al., 2021b). Other regional studies have 
projected water use based on demand and water constraints. For 
example, Smolenaars et al. (2022) projected water use in the Indus basin 
under consideration of various climatic and socioeconomic factors while 
accounting for inter-basin variability in water supply. Our study spe-
cifically focuses on water scarcity issues in China. The results of our 
analysis align with global projections that northern China will endure 
water scarcity in this century and that China can expect less water stress 
at the end of century than in 2005. We also highlight the finding that 
China will face the worst water scarcity in 2025–2035, which has never 
been previously reported in global studies. We attribute the decline in 
water stress after 2050 to technological improvements, energy shifts, 
and population decline in China. Unlike previous studies, we projected 
the future WSI changes based on four GCM outputs, which enhances 
confidence in our finding that the national water stress in China will 
decline in the late 21st century. 

Implications to the pathways to carbon neutrality 

Different water footprints simulated under the same SSP assumptions 
reflect the impacts of emission mitigation measures in climate policy 
scenarios. This study has indicated that emission reductions often come 
at the cost of high water footprint. Many emission cut actions exacerbate 
water use in several sectors, particularly the electricity sector, as pre-
vious studies have found (Fricko et al., 2016; Kyle et al., 2013). 

China has committed to peaking its emissions before 2030 and 
becoming carbon neutral by 2060. In this context, a low carbon energy 

transition is needed to balance the promise of reducing emission and 
satisfy growing energy demand. Meanwhile, China has set a national 
water use goal that annual water consumption must not exceed 700 km3 

by 2030. Given the dual constraints (carbon emission and water use), 
energy decisions should be made wisely. Many low-carbon energy op-
tions are water-intensive. While existing studies suggest that bioenergy 
with carbon capture and storage (BECCS) is a feasible carbon-negative 
technology (e.g., Azar et al., 2010), the irrigation of energy crops for 
biomass production leads to higher water consumption than fossil fuels 
and undermines food security (Séférian et al., 2018). The shift from 
conventional oil to unconventional liquid fuels also increases water 
demands (Clark et al., 2013). The large-scale deployment of low-carbon, 
water-intensive technologies would significantly increase water demand 
and result in a potential water crisis. Although Direct Air Capture, a 
negative emission technology, uses less water than BECCS (e.g., Madhu 
et al., 2021), the technology is still at a preliminary research stage and 
has not yet demonstrated its applicability on a large scale (Madhu et al., 
2021). Hydrogen is also a clean energy source with no GHG emissions 
and uses less water. However, several problems impede the widespread 
application of hydrogen energy. Currently, most hydrogen is generated 
from fossil fuels rather than expensive renewable energy and natural gas 
(IEA, 2021). Researchers also note that hydrogen leakage could indi-
rectly cause global warming by extending the lifetime of methane and 
other GHGs in the atmosphere (Derwent et al, 2020). 

Further water demand arising from emission reductions could 
intensify water scarcity and lead to regional water competition. To avoid 
this problem, sustainable water management policies are imperative as 
part of regional regulation. To fundamentally solve this problem, low- 
carbon and low water-intensity energy sources such as wind and solar 
photovoltaics must be sought, and water-efficient cooling technology for 
power plants must be promoted. Studies have shown that air and 
seawater cooling technologies can effectively reduce water use for 
power generation and reduce water demand by 50–80% (Fricko et al., 
2016; Kyle et al., 2013). When assessing emission reduction strategies, it 
is critical to consider whether the measures increase water demand, 
which can intensify competition among water use sectors. Further 

Fig. 6. Water stress estimates in China in 2015 (a), 2035 (b), and 2100 (c) and normalized relative percent changes in WSI between 2005 and 2015 (d), 2015–2035 
(e), and 2035–2100 (f). WSI values are calculated as averages of four GCM-SSP2-RCP6.0 simulations. Yellow and red colors indicate water stressed basins. Relative 
percent changes in WSI are presented as normalized values using a Min-Max approach with the values from all basins. A negative normalized relative percent value 
indicates an improvement in water stress relative to the reference year (e.g., 2005 in (d)), while a positive value indicates a worsening of water stress. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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research is necessary to demonstrate how to balance environmental 
water demand, socioeconomic development, and emission reduction 
measures. 

Limitations 

National water use in China is strongly influenced by policy regu-
lations, yet this study has limitations as it does not consider water- 
related policies that directly affect water footprints, except for emis-
sion mitigation and adaptation policies. Furthermore, the new “three- 
child policy” in China, aimed at increasing birth rates, will directly in-
crease water demand but was not considered in this study. In addition, 
transboundary water allocations result in water resource redistribution. 
The South-North Water Diversion Project, which moves surplus water 
from water-surplus basins to water-scarce basins, affects water supply in 
China (Yin et al., 2020) and alleviates stress condition, but may reduce 
ecological water supply and undermine watershed environment. Our 
study did not consider the impact of global trade on regional water 
footprints through the transfer of water-intensive products such as 
wheat and rice (Muratoglu, 2020). Graham et al. (2020) found that 
agricultural trade leads to significant virtual water flows between re-
gions, which may lead to discrepancies between projected results and 
actual water use. 

While our estimation accounts for technological improvements in the 
electricity, agriculture, and industry sections, the water market applies 
to a basin level, so the differences in water supply systems and water 
infrastructure within a large basin cannot be considered. This simplified 
setting may not fully reflect the real China. For example, water-efficient 
irrigation is rarely used in water abundant regions like southern China 
where terrace farming is practiced. In addition, the treatment and reuse 
of wastewater increases water supply, but recycled wastewater was not 
included as a water source in this study. 

The choice of hydrological and climatic models has been shown to 
influence the simulation of water stress (Schewe et al., 2014). While we 
used data from multiple climate models, we relied on a single hydro-
logical model, which may introduce uncertainties in predicting runoff. 
Notably, our research focused on watersheds that are much more finely 
gained than the national scale typically used in many water scarcity 
research. We applied a simple downscaling/upscaling approach to 
allocate water to and from catchments, but even this has uncertainty, 
especially in the treatment of transboundary water allocation for inter-
national catchments. In large basins, upstream water use has a bearing 
on downstream water scarcity. Previous research has found that human 
activities exacerbate downstream water scarcity through water with-
drawal and wastewater discharge (Veldkamp et al. 2017). 

This study explicitly considered ecological water demand and, as per 
Kim et al. (2016), we used 10 % of the long-term mean monthly natural 
streamflow as the EFR. However, the EFR varies from basin to basin, and 
the 10% threshold is close to the low end of actual EFR (Hogeboom et al., 
2020; Voisin et al., 2013), which ensures minimal ecological conserva-
tion. Therefore, incorporating basin-specific EFR values in the WSI 
calculation may provide a more realistic estimate of water stress. 

Conclusions 

In this study, we developed an integrated modeling approach to 
simulate water footprints and water scarcity in China, which allows for 
the simultaneous consideration of climate change and socioeconomic 
factors. We integrated the global hydrological model Xanthos with the 
integrated assessment model GCAM to provide available water supply 
and constrain GCAM. We evaluated future changes in water footprint in 
China from 2005 to 2100 under different climatic and socioeconomic 
conditions using 52 GCM-SSP-RCP scenario combinations, and then 
assessed water scarcity in 22 basins of China under SSP2-RCP6.0. 

Our results show that the established integrated modeling approach 
can well reproduce historical water footprints. China’s water footprint 

peaks in 2030 s during 2005–2100 and then declines steadily under all 
scenarios except the SSP5 scenarios. The simulated mean water footprint 
of China can be as high as 501.2 ± 6.1 km3 (95% CL) before decreasing 
to 289.4 ± 13.2 km3 (95% CL) in 2100. With all scenarios considered, 
the maximum national water footprint can range from 460.9 km3 to 
525.6 km3. The electricity and domestic sectors in SSP3 and industrial 
and domestic sectors in the other SSPs lead to a reduction in the national 
water footprint. While irrigation and industry are the two most impor-
tant water use sectors in 2005, irrigation and electricity become the 
most important in 2100. The water footprint for electricity generation 
grows significantly in the SSP2, SSP4, and SSP5 scenarios, making 
electricity one of the most important water use sectors in 2100. Analysis 
of the scenario matrix indicates that climate policy implementation is 
the main reason for variations in the water footprint across climate 
mitigation scenarios. Emission reductions in the electricity sector have a 
strong impact on the water footprint, and the implementation of strin-
gent climate policies increases the water footprint of electricity 
generation. 

In general, water stress in China is highest in 2030s with a national 
average WSI of 0.360 ± 0.010, and most northern basins experience 
water scarcity in these years. The water footprint in the interior Ziya He 
basin is more than twice the available water. The SSP2-RCP6.0 pro-
jections based on four GCM outputs consistently show that national 
water stress in China decreases after 2050, resulting in an even lower 
WSI in 2100 than 2005. In most basins, water scarcity is likely to be 
worst by 2035. Population decline, implementation of water conserva-
tion policies, and improvement in water use efficiency are responsible 
for the decline in water scarcity throughout China in the late 21st cen-
tury. Although this study has incorporated climate-derived impacts on 
water supply, it does not account for trans-basin water diversion and the 
varying EFRs among basins. Moreover, certain policies, such as Chinese 
“three-child policy” may cause deviations from anticipated population 
change. Further studies that account for these policies may provide a 
more realistic assessment of changes in water stress. 
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com/JGCRI/gcam-core/releases (accessed January 4, 2022) and https 
://github.com/JGCRI/xanthos/releases (accessed January 4, 2022), 
respectively. Codes for spatial downscaling of water use and water 
withdrawals are available at https://github.com/JGCRI/tethys/releases 
(accessed January 4, 2022). Results of this integrated method are 
available at https://doi.org/10.6084/m9.figshare.22785104. 
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Eisner, S., Fekete, B.M., Colón-González, F.J., Gosling, S.N., Kim, H., Liu, X., 
Masaki, Y., Portmann, F.T., Satoh, Y., Stacke, T., Tang, Q., Wada, Y., Wisser, D., 
Albrecht, T., Frieler, K., Piontek, F., Warszawski, L., Kabat, P., 2014. Multimodel 
assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. U.S.A. 111 
(9), 3245–3250. 
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