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Highlights: 

 A unified model was developed for unfrozen and frozen soil thermal 

conductivity 

 New model accurately reproduces the increase at low moisture and during 

freezing 

  High predicative scores were obtained using a large compiled dataset 

Highlights (for review)
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Abstract 11 

Soil thermal conductivity (STC) is a crucial parameter in modeling land surface processes. 12 

However, the current STC models are developed separately for unfrozen and frozen soils, leading 13 

to inconsistent understanding. In this study, we propose a unified model based on the work of 14 

Ghanbarian and Daigle (2016) originally developed for unfrozen soils. The unified model 15 

comprises three parameters: critical volume fraction ( 𝜙𝑐 ), scaling exponent ( 𝑡 ), and a 16 

compensating factor (𝛼), and considers dry soil as the low-conductivity component (weighted by 17 

air volume fraction) and saturated soil as the high-conductivity component (weighted by 18 

volumetric liquid content for unfrozen state and total water content for frozen state). Specifically, 19 

𝜙𝑐 represents a critical point where high-conductivity component begins to govern the behavior of 20 

effective STC, characterized by 𝑡. 𝛼 allows for accurate calibration of saturated STC. Using a 21 

dataset of 90 unfrozen samples (693 measurements) and 74 frozen samples (255 measurements), 22 

pedotransfer functions (PTFs) for the three parameters were trained. The unified model 23 

successfully reproduces the sharp rise in STC at low moisture conditions during wetting and the 24 

increase during freezing. Compared to an empirical model (Côté and Konrad, 2005a) and a 25 

theoretical model (Tian et al., 2016), the unified model demonstrates higher predictive skill for 26 

unfrozen and frozen soils, achieving Nash-Sutcliffe efficiency coefficients of 0.96 and 0.90, 27 

respectively. This work contributes to a more consistent and comprehensive understanding of STC 28 

in cold environments and has the potential to be integrated into land surface models. 29 

Keywords 30 

Soil thermal conductivity, Frozen soils, Effective medium approximation, Unified model, 31 

Pedotransfer function 32 
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1 Introduction 33 

The Earth’s changing thermal state has raised growing concerns, particularly in light of the 34 

recorded significant warming trends (Biskaborn et al., 2019) and the projected potential 35 

intensification (Zhang et al., 2022). Soil thermal conductivity (STC) plays a critical role in 36 

regulating thermal energy distribution, impacting physical (Burke et al., 2020; Ding et al., 2021), 37 

chemical (Colombo et al., 2018), and biological (Hu et al., 2022; Wang et al., 2023) processes at 38 

land surface and subsurface. Accurate and robust parameterization of STC is essential for 39 

advancing land surface models (LSMs) and achieving a comprehensive understanding of the 40 

tightly coupled interactions on the interface between land and atmosphere (Koven et al., 2013; Sun 41 

et al., 2023).  42 

The intricacy of soil lies in its diverse composition including solid particles, air, liquid water, and 43 

ice. While the thermal conductivities of air (0.024 Wm-1°C-1), liquid water (0.56 Wm-1°C-1), and 44 

ice (2.22 Wm-1°C-1) are well-established, the thermal conductivity of solid particles varies between 45 

1 and 5 Wm-1°C-1 depending on mineral compositions. However, accurately predicting STC 46 

becomes challenging when considering factors such as the ratio of each component (e.g., porosity, 47 

degree of saturation) (Chen, 2008; Smits et al., 2010), interactions between components (e.g., 48 

water film coating solid particles) (Lu and Dong, 2015), and the microstructure (e.g., contact 49 

among solid particles) (Farouki, 1981). Estimating STCs is relatively straightforward for 50 

completely dry and fully saturated states (He et al., 2021b; Wang et al., 2021), but it becomes more 51 

intricate for moist soils (Dong et al., 2015; Zhang and Wang, 2017) and partially frozen soils (He 52 

et al., 2021a).  53 

Two main types of STC models have been developed: empirical and theoretical. Empirical models 54 

establish relationships between STC and influencing factors (e.g., texture, porosity, moisture 55 
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content) (Côté and Konrad, 2005a; Farouki, 1981; Johansen, 1975; Kersten, 1949; Peters-Lidard 56 

et al., 1998), providing a balance between accuracy and simplicity. Among them, the normalized 57 

concept, derived from Johansen (1975) and advanced by Côté and Konrad (2005a) (hereafter 58 

referred to as CK2005), has been widely used in LSMs (Dai et al., 2003; Niu et al., 2011; Wu et 59 

al., 2018).  60 

On the other hand, theoretical models are based on idealized assumptions about the arrangement 61 

of components. Two well-known assumptions are series addition (i.e., arithmetic mean) and 62 

parallel addition (i.e., harmonic mean). The de Vries model (1963) assumes that solid particles are 63 

dispersed in a continuous fluid. This model has gained popularity and been extended to frozen 64 

soils by Farouki (1982). More recently, Tian et al. (2016) developed a simplified yet more general 65 

version by relating the shape factor to soil texture (hereafter referred to as Tian2016). Another 66 

noteworthy theoretical model, based on the General Effective Media (GEM) theory, was proposed 67 

by Ghanbarian and Daigle (2016) for unfrozen soils (hereafter referred to as GD2016) and had 68 

demonstrated advantage in depicting the sharp increase of STC caused by the effect of “liquid 69 

capillary bridge”, which is essential to the form of continuous heat transfer pathways.  70 

However, there still remains a lack of satisfactory STC model for frozen soils, of which the most 71 

are adaptions of those designed for frozen soils (Du et al., 2020; Li et al., 2019). The presence of 72 

ice complicates the heat conduction process in frozen soils, with ice having four times higher 73 

thermal conductivity and 0.92 times the density of liquid water. The phase change between ice and 74 

liquid water not only changes the volume ratio of soil components but also alters the contact area 75 

(Farouki, 1981), thereby affecting STC. Additionally, measuring STC under frozen state is prone 76 

to errors introduced by the latent heat absorbed during ice melting, especially at temperatures close 77 

to the freezing point (i.e., −4 to 0 °C) (Overduin et al., 2006; Tian et al., 2015). Though the transient 78 
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method is superior to the steady-state method, it still fails to avoid this flaw completely (Wan et 79 

al., 2022), resulting in relatively scarce and less precise measurements.  80 

From the perspective of modeling, solving STCs separately for unfrozen and frozen states 81 

inevitably leads to jumping discontinuities around the phase change, causing inaccurate simulation 82 

results in LSM due to error propagation (Dai et al., 2019; Harp et al., 2016; Ren et al., 2023). The 83 

phase change is of great importance for studying cold-region land surface processes, such as the 84 

zero-curtain effect (Zhao et al., 2022) and active layer thickness (Smith et al., 2022; Zhao et al., 85 

2010). A unified model that considers both unfrozen and frozen soils holds the potential to address 86 

these challenges. However, to the best of our knowledge, there are few unified models in this field, 87 

possibly due to the lack of an appropriate theoretical basis. 88 

In this study, we propose a unified model applicable to both unfrozen and frozen conditions by 89 

extending the well-established GD2016 model. In Section 2, we present the unified model after 90 

reviewing the GD2016 model and provide details of the experimental design and measured dataset. 91 

Section 3 demonstrates the characteristics and capabilities of the unified model using measured 92 

data and the comparison with two selected models. Finally, we provide discussion in Section 4 and 93 

a concise summary of this study in Section 5. 94 

2 Methods and Materials 95 

2.1 The GD2016 model 96 

The GD2016 model is rooted in the GEM equation proposed by McLachlan (1987, 1986, 1985), 97 

which combines the effective medium approximation to constrain the lower and higher bounds 98 

and the percolation theory to refine the transition behavior near the critical regime. Ghanbarian 99 

and Daigle (2016) adapted the GEM equation for STC (𝜆𝑒𝑓𝑓) in unfrozen conditions by designating 100 
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complete dry soil (with STC represented by 𝜆𝑑𝑟𝑦) as the low-conductivity component (LCC) and 101 

fully saturated soil (with STC represented by 𝜆𝑠𝑎𝑡) as the high-conductivity component (HCC). 102 

The GD2016 model is expressed in Equation (1): 103 
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 (1) 104 

where the volume fraction of air (𝑛 − 𝜃𝑙𝑖𝑞) and liquid water (𝜃𝑙𝑖𝑞) in the soil pores determines the 105 

weighting of the LCC and HCC, respectively. 𝑛 is the soil porosity. The parameter 𝜙𝑐, referred to 106 

as critical volume fraction, represents the point at which 𝜆𝑒𝑓𝑓  transitions from 𝜆𝑑𝑟𝑦  to 𝜆𝑠𝑎𝑡 , 107 

analogous to the percolation threshold in percolation theory. As 𝜃𝑙𝑖𝑞 increases to 𝜙𝑐, a continuous 108 

cluster, akin to a heat transfer path for thermal conduction, forms across the material, leading to 109 

𝜆𝑒𝑓𝑓  dominated by 𝜆𝑠𝑎𝑡 . Conversely, for smaller 𝜃𝑙𝑖𝑞 , the clusters become finite and isolated 110 

(Kirkpatrick, 1973), which indicates that 𝜆𝑒𝑓𝑓 is closer to 𝜆𝑑𝑟𝑦. The scaling exponent, 𝑡, inherited 111 

from the GEM equation, characterizes the transitional behavior of the transport property around 112 

𝜙𝑐  to accommodate non-spherical shapes of the components, such as (randomly) oriented 113 

ellipsoids (McLachlan, 1987).  114 

Using a dataset of 17 unfrozen soil samples, Sadeghi et al. (2018) derived soil pedotransfer 115 

functions (PTFs) for the model parameters 𝜙𝑐 and 𝑡: 116 

 0.33c clayf  (2) 117 

 0.25 0.342clayt f    (3) 118 

where 𝑓𝑐𝑙𝑎𝑦  denotes the fraction of clay. However, 𝜆𝑑𝑟𝑦  and 𝜆𝑠𝑎𝑡  were treated as tunning 119 

parameters without explicit PTFs. 120 
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2.2 The unified model 121 

We propose a unified STC model by extending the GD2016 model to cover both unfrozen soils 122 

and frozen soils:  123 
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 (4) 124 

where the sum of liquid and ice contents ( 𝜃𝑙𝑖𝑞 + 𝜃𝑖𝑐𝑒 ), also known as total water content, 125 

determines the weight of HCC. A compensating factor, 𝛼 , is newly introduced to mitigate 126 

uncertainty in estimating 𝜆𝑠𝑎𝑡  (Equation (6)–(8)). When 𝜃𝑖𝑐𝑒 = 0 and 𝛼 = 1, the unified model 127 

reduces to GD2016 for unfrozen soils. 𝜆𝑠𝑎𝑡 for frozen soils represents the STC in saturation but 128 

under extreme naturally cold conditions (assumed to be −40 °C in this study), while for unfrozen 129 

soils, 𝜆𝑠𝑎𝑡 remains independent of soil temperature.  130 

To estimate 𝜆𝑑𝑟𝑦, we adopt the empirical relation developed by Côté and Konrad (2005a) for its 131 

high accuracy: 132 

 10 n

dry

    (5) 133 

where 𝜒 and 𝜂 are empirical parameters. 𝜒 equals 1.70 for gravels, 0.75 for natural mineral soils, 134 

and 0.30 for peat, while 𝜂 is assigned the values 1.80, 1.20, 0.87, respectively. 𝜆𝑠𝑎𝑡 is estimated 135 

using a geometric mean (Côté and Konrad, 2005a): 136 

 
, ,1 ).09(1 liq sat liq satnn

sat solid liq ice

 
   

  (6) 137 

where 𝜃𝑙𝑖𝑞,𝑠𝑎𝑡 represents the saturated liquid water content. For unfrozen soils, 𝜃𝑙𝑖𝑞,𝑠𝑎𝑡 is equal to 138 

the porosity 𝑛, so eliminating the term 𝜆𝑖𝑐𝑒. For frozen soils, 𝜃𝑙𝑖𝑞,𝑠𝑎𝑡 is calculated as the maximum 139 
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unfrozen water content at −40°C, as explained in Section 2.3. The term 1.09(𝑛 − 𝜃𝑙𝑖𝑞,𝑠𝑎𝑡) 140 

represents the ice fraction considering the density difference. 𝜆𝑠𝑜𝑙𝑖𝑑 is the thermal conductivity of 141 

solid particles, depending on the forming minerals, which can vary from 2 Wm-1°C-1 (e.g., 142 

plagioclase) to 8 Wm-1°C-1 (e.g., silica) (Horai, 1971). Given often unavailability of mineral 143 

contents in measurements, we estimate 𝜆𝑠𝑜𝑙𝑖𝑑  using quartz content, 𝑓𝑞𝑢𝑎𝑟𝑡𝑧  (Johansen, 1975), 144 

which is approximately a function of sand content, 𝑓𝑠𝑎𝑛𝑑  (He et al., 2021a), when quartz 145 

information is absent in soils:  146 

 
1quartz quartzf f

solid quartz others  


  (7) 147 

 0.5quartz sandf f  (8) 148 

where 𝜆𝑜𝑡ℎ𝑒𝑟𝑠 for any other forming minerals is assigned a value of 2 Wm-1°C-1 when 𝑓𝑞𝑢𝑎𝑟𝑡𝑧 > 149 

0.2, otherwise, 3 Wm-1°C-1, while 𝜆𝑞𝑢𝑎𝑟𝑡𝑧 is a constant value of 7.7 Wm-1°C-1.  150 

2.3 Estimation of unfrozen water content in frozen soils 151 

In Equations (4) and (6), 𝜃𝑙𝑖𝑞  and 𝜃𝑙𝑖𝑞,𝑠𝑎𝑡  for frozen soils are related to soil temperature. One 152 

commonly used method for estimating 𝜃𝑙𝑖𝑞 for frozen soils involves using soil water potential (Ψ) 153 

as an intermediary, connecting 𝜃𝑙𝑖𝑞 and soil temperature, 𝑇. The relation between Ψ and 𝜃𝑙𝑖𝑞 was 154 

given by Brooks (1965): 155 

 
B

liqψ Aθ  (9) 156 

where 𝐴 and 𝐵 are parameters related to soil texture, with values provided by Saxton et al. (1986): 157 

  2 2exp 4.396 7.15 4.880 4.285 100dcla sandy claysanA f f f f      (10) 158 

 
2 23.140 22.2 3.484clay claysandB f f f     (11) 159 
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where the constant 100 is used to convert from the unit of bar to kPa. 160 

Meanwhile, the Clausius-Clapeyron equation describes the relation between Ψ  and 𝑇 , with a 161 

simplified version applicable to frozen soils (Kurylyk and Watanabe, 2013): 162 

 
1000 273.15

f liqL T 
  

 


  (12) 163 

where 𝜌𝑙𝑖𝑞 denotes liquid water density (1000 kg m-3), 𝐿𝑓 is the latent heat of fusion (3.34 ×105 J 164 

kg-1), 1000 is the conversion factor from Pa to kPa. By combining Equations (9) and (12), the 165 

maximum unfrozen water content, 𝜃𝑢𝑤𝑐,𝑚𝑎𝑥, can be estimated from 𝑇 as follows: 166 

 ,

1/

( )

B

uwc max T
A




  (13) 167 

𝜃𝑢𝑤𝑐,𝑚𝑎𝑥(𝑇) represents the theoretically maximum unfrozen water content at a given sub-zero 168 

temperature and can be used to estimate 𝜃𝑙𝑖𝑞, as shown in Equation (14).  169 

  ,min , ( )ini uwc maxliq T    (14) 170 

where 𝜃𝑖𝑛𝑖 is the initial water content before the onset of freezing. For a given temperature, 𝑇 < 0 171 

°C, when 𝜃𝑖𝑛𝑖 exceeds 𝜃𝑢𝑤𝑐,𝑚𝑎𝑥(𝑇), 𝜃𝑙𝑖𝑞 takes 𝜃𝑢𝑤𝑐,𝑚𝑎𝑥(𝑇), and the excess part will undergo a 172 

phase change to ice. Obviously, 𝜃𝑙𝑖𝑞,𝑠𝑎𝑡 for frozen soils equals 𝜃𝑢𝑤𝑐,𝑚𝑎𝑥 (−40°C) in our setting. 173 

2.4 Measured dataset 174 

In this study, we complied a dataset consisting of 90 unfrozen soil samples totaling 693 175 

measurements, and 74 frozen soil samples totaling 255 measurements, from published literature. 176 

Each soil sample in the dataset corresponds to consistent soil texture and dry bulk density (𝜌𝑑) to 177 

account for variations that impact STC. A measurement is a unique combination of STC and total 178 
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water content for a soil sample. We followed the criteria set by He et al. (2021a) for filtering the 179 

measurements. These criteria include: (1) using reliable and reproducible experimental 180 

technique/setup, with 𝜆𝑒𝑓𝑓 measured using either the transient heat pulse or steady-state method; 181 

(2) having detailed descriptions of specimen preparation and complete information on soil texture, 182 

porosity, dry bulk density; and (3) providing a sufficient number of measurements per sample. The 183 

essential details of the collected samples are presented in Table 1, with the corresponding 184 

distribution of soil texture depicted in Figure 1. 185 
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Table 1  Basic information of unfrozen and frozen samples used in this study.  186 

State Source Sand Silt Clay  Temp.1  𝝆𝒅 2 𝒏 3 𝜽𝒕𝒐𝒕 
4 

# of 

samples5 

# of 

meas. 
Method6 

     (°C) (kg m-3) (m3 m-3) (m3 m-3)    

Unfrozen 
McInnes 

(1981) 
0.20 – 0.95 0.03 – 0.68 0.02 – 0.24 … 1251 – 1500 0.43–0.53 0 – 0.33 5 76 

Transient method 

(TCP) 

 
Campbell et al. 

(1994) 
0.09 – 0.89 0.06 – 0.70 0.05 – 0.47 … 760 – 1500 0.43 – 0.71 0 – 0.39 9 85 

Transient method 

(TCP) 

 
Kasubuchi et 

al. (2007) 
0.28 – 1.00 0 – 0.58 0 – 0.43 … 854 – 1620 0.40 – 0.65 0 – 0.65 4 43 

Transient method 

(TCP) 

 
Lu et al. 

(2007) 
0.08 – 0.94 0.01 – 0.70 0.05 – 0.32 … 1293 – 1600 0.41 – 0.52 0 – 0.52 10 121 

Transient method 

(Thermo-TDR) 

 Chen (2008) 0.17 – 0.94 0.06 – 0.59 0 – 0.24 … 1201 –1712 0.35 – 0.55 0 – 0.55 16 80 
Transient method 

(TCP) 

 
Tarnawski and 

Leong (2012) 
1 0 0 … 1590 –1802 0.32 – 0.40 0 – 0.4 6 48 

Transient method 

(TCP) 

 
Tarnawski et 

al. (2015) 
0 – 1 0 – 0.83 0 – 0.42 … 976 – 1708 0.36 – 0.63 0 – 0.63 40 240 

Transient method 

(TCP) 

Frozen Kersten (1949) 0.08 – 1 0 – 0.81 0 – 0.27 −30 – 5 1277 – 2020 0.25 – 0.53 0.19 – 0.38 20 70 
Steady-state 

method 

 
Penner et al. 

(1975) 
0 – 0.9 0 – 0.71 0.04 – 0.56 −25 – 5 1491 – 1970 0.28 – 0.46 0.07 – 0.33 19 45 

Transient method 

(Heat flow) 

 
Tian et al. 

(2016) 
0.07 – 0.94 0.01 – 0.60 0.01 – 0.43 −10 1209 – 1585 0.40 – 0.54 0.08 – 0.36 19 20 

Transient method 

(Thermo-TDR) 

 
Zhang et al. 

(2018) 
0.39 0.54 0.07 −19 – 8 1500 0.43 0.19 – 0.30 4 36 

Transient method 

(SPHP) 

 
Lu et al. 

(2018) 
0.88 0.12 0 −15 – 1 1600 0.40 0.11 – 0.24 3 15 

Transient method 

(SPHP) 

 
Kojima et al. 

(2018) 
0.50 0.29 0.21 −15 – 1 1200 0.56 0.16 – 0.46 4 24 

Transient method 

(DPHP) 

 
Xu et al. 

(2020) 
0.18 0.45 0.37 −38 – 6 1650 – 1830 0.33 – 0.39 0.27 – 0.35 5 45 

Transient method 

(Line heat) 

187 

1 Unfrozen samples were measured under room temperature ranging from 4 to 25 °C; 
2 𝝆𝒅, dry bulk density; 
3 𝒏, porosity; 
4 𝜽𝒕𝒐𝒕, total water content (liquid + ice fraction); 
5 A soil sample corresponds to consistent soil texture and dry bulk density; 
6 TCP: thermal conductivity probe; TDR: time-domain reflectometry; SPHP: single probe heat pulse; DPHP: dual probes heat pulse. 
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 188 

Figure 1  Distribution of soil samples over particle size triangles for (a) unfrozen and (b) frozen 189 

soils. The training and testing samples are presented separately by blue and red dots, respectively. 190 

2.5 Experiment design 191 

The unified model fits each sample by optimizing the model parameters: the critical volume 192 

fraction (𝜙𝑐 ), scaling exponent (𝑡 ), and compensating factor (𝛼 ) to minimize the objective 193 

function. To ensure realistic parametric values, the effective ranges of the parameters are set as 194 

follows: [0.0, 𝑛] for 𝜙𝑐, [0.0, 0.6] for 𝑡, and [0.5, 1.5] for 𝛼, based on previous studies (Ghanbarian 195 

and Daigle, 2016; McLachlan et al., 1990; Sadeghi et al., 2018) and expert knowledge. The upper 196 

limit of 𝜙𝑐 is constrained not to exceed porosity, 𝑛, which also acts as the maximum HCC fraction. 197 

The range of 𝑡 is slightly expanded from the range of [0.2, 0.4] suggested by Ghanbarian and 198 

Daigle (2016) to account for potential shifts in the saturation-dependent curve for frozen soils. The 199 

range of α is limited to [0.5, 1.5] to balance the flexibility in correcting 𝜆𝑠𝑎𝑡 estimation and the 200 

risk of over-fitting, which could yield inappropriate results for 𝜙𝑐 and 𝑡. Parameter fitting uses a 201 

particle swarm optimization R package (Claus, 2022). 202 
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To establish the PTFs for the model parameters and validate the new model, the compiled dataset 203 

was divided into two independent datasets: one for training (about 2/3 of total measurements) and 204 

the other for testing (remaining 1/3) (Figure 1). However, considering the uneven distribution of 205 

soil texture in the samples and to ensure independent validation from calibration, we opted for 206 

purposeful division over random division. Specifically, for unfrozen soils, the measurements from 207 

Tarnawski et al. (2015) were used as the testing set (40 samples, 240 measurements), while for 208 

frozen soils, the measurements of Penner (1975) and Tian et al. (2016) were used as the testing set 209 

(38 samples, 65 measurements). The remaining samples were used as the training set. 210 

Using the training dataset, strongly explanatory variables were identified based on pairwise 211 

correlation coefficients between the fitted model parameters and soil properties. PTFs were then 212 

established using simple linear regression after removing some outliers. For parameters that did 213 

not show a strong correlation with the soil properties, the median value was used as a substitute to 214 

ensure generality. Upon the establishment of the PTFs, the new model was applied to estimate 215 

STCs for samples in the testing set. 216 

We chose the CK2005 and Tian2016 models as reference models for comparison, with the detailed 217 

description provided in Section 2.6. These models were individually optimized to explore their 218 

best potential performance (Section 3.1), while their default PTFs were used for evaluating the 219 

capability to predict the testing dataset (Section 3.4), resembling a real-world scenario used in an 220 

LSM. Additionally, the GD2016 model was also included in the comparative analysis for unfrozen 221 

samples. 222 

Three metrics were used to assess the model performance: bias, root-mean-square error (RMSE), 223 

and Nash-Sutcliffe efficiency (NSE): 224 
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where 𝑁  is the total number of measurements; �̅� is the mean of measurements (𝑂𝑖 ); 𝑃𝑖  is the 228 

predicted value. Bias indicates the absolute error, with positive values indicating overestimation 229 

by the model and negative values indicating underestimation. RMSE complements bias by 230 

considering the squared errors, which is also used as the objective function in parameter 231 

optimization. NSE quantifies the predictive skill in terms of the variance with reference to the 232 

mean of measurements, ranging from −∞ to 1. An NSE value of 0 indicates the same prediction as 233 

the mean, while an NSE value of 1 represents a perfect prediction where the error variance is zero. 234 

2.6 Two compared models 235 

Three criteria guided the selection of reference models: (1) widespread use with high-accuracy 236 

estimates; (2) representation of either empirical or theoretical types; (3) capability to model STC 237 

for both unfrozen and frozen soils. Ultimately, the CK2005 and Tian2016 models were chosen as 238 

representatives of empirical and theoretical models, respectively. 239 

2.6.1 CK2005: An empirical model based on the normalized concept 240 

Johansen (1975) proposed a concept of normalized STC: 241 

   yeff sat rr d dryk       (18) 242 

where 𝑘𝑟  is the Kersten number. Côté and Konrad (2005a) advanced the model by offering a 243 

scheme for dry and saturated soils as well as 𝑘𝑟: 244 
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where 𝑆𝑟  denotes the degree of saturation, and 𝜅 is an empirical parameter to account for the 246 

variability in soil types and the frozen/unfrozen state. For unfrozen (frozen) soils, the value for 𝜅 247 

is 4.60 (1.70) for gravels and coarse sands, 3.55 (0.95) for medium and fine sands, 1.90 (0.85) for 248 

silty and clayey soils, and 0.60 (0.25) for peat. In our experiment, we calibrated the value of 𝜅 for 249 

each soil sample to explore its best potential in fitting the measurements. The same methods for 250 

estimating 𝜆𝑠𝑎𝑡 and 𝜆𝑑𝑟𝑦 have been incorporated into the unified model as Equations (5) to (7). 251 

2.6.2 Tian2016: A theoretical model based on de Vries model 252 

The de Vries model represents the thermal conductivity as a sum of contributions from each 253 

component (Farouki, 1982): 254 
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where 𝜆𝑗  denotes thermal conductivity, 𝑘𝑗  the normalized thermal gradient, and 𝑓𝑗  the volume 256 

fraction for component 𝑗 in a medium with a total of 𝑁 + 1 components (i.e., solid, air, liquid 257 

water and ice). Specifically, the 0-th component is the continuous medium, which is the air in 258 

completely dry soil or water in moist soil. Other component, detonated by 𝑗 (where 1 ≤  𝑗 ≤  𝑁), 259 

is assumed as a rotational ellipsoid (i.e., an ellipsoid with two equal semi-diameters). Assuming 260 

heat flux parallel to the rotational axis, 𝑘𝑗 can be expressed as follows:  261 
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where 𝑔𝑎  is the shape factor of 𝑗 -th component, whose value equals the demagnetization 263 

coefficient.  264 

Tian et al. (2016) improved the de Vries model in various aspects. First, the thermal conductivity 265 

and shape factor of solid particles were estimated based on the soil texture: 266 

 
sand silt clay

s

ff f

solid ilt cl ysan ad     (22) 267 

where 𝜆𝑠𝑎𝑛𝑑 = 7.7 Wm-1°C-1, 𝜆𝑠𝑖𝑙𝑡 = 2.74 Wm-1°C-1, 𝜆𝑐𝑙𝑎𝑦 = 1.93 Wm-1°C-1, and 268 

 ( ) ( ) ( ) ( ) ya solid a sand sand a ysil csil at lat clag g f g f g f    (23) 269 

where 𝑔𝑎(𝑠𝑎𝑛𝑑) = 0.182, 𝑔𝑎(𝑠𝑖𝑙𝑡) = 0.0534, 𝑔𝑎(𝑐𝑙𝑎𝑦) = 0.00775. Second, the shape factor of air and 270 

ice were related to their volume fractions (𝑓) relative to the porosity (𝑛), which characterizes the 271 

hypothetical ellipsoids from the needle prolate spheroid (𝑔𝑎 = 0) to the sphere (𝑔𝑎 = 1/3). 272 
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Third, the effect of vapor on thermal conductivity was ignored due to its minor role in modern 275 

transient measurements. Additionally, the de Vries-based model required a multiplier of 1.25 to 276 

adjust for the case of completely dry soils. To align with Tian et al. (2016), who established PTFs 277 

for 𝜆𝑠𝑖𝑙𝑡 and 𝑔𝑎(𝑠𝑖𝑙𝑡), we also calibrated the same two parameters for the Tian2016 model. 278 
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3 Results 279 

3.1 Reproduction of STC characteristics across wetting and freezing processes 280 

Figure 2 illustrates the performance of the models in reproducing STC changes during the wetting 281 

and freezing processes across various soil textures, ranging from fine particles (clay) to coarse 282 

particles (sand). For unfrozen soils, the unified model effectively reproduces the rapid increase in 283 

STC at the critical water content (𝜙𝑐), as well as the gentle changes at low and high liquid water 284 

content (Figure 2a–c), with an average bias of −0.01 Wm-1°C-1, an NSE of 0.99, and all RMSE 285 

values below 0.05 m3m-3. As the solid particles change from fine-grained to coarse-grained, 𝜙𝑐 286 

decreases from 0.15 to 0.01 m3m-3. This reduction is due to the fact that 𝜙𝑐  characterizes the 287 

formation of a “liquid capillary bridge” between solid particles, which requires more water to form 288 

in fine-grained soil due to its larger specific surface area (Anderson and Tice, 1972; Chen, 2008). 289 

Upon the formation of “liquid capillary bridge”, the contribution to STC of replacing air with water 290 

is limited, resulting in the observed gentle changes. Despite the lack of the compensating factor α, 291 

the GD2016 model can still capture the changes in STC, but at the cost of using 𝜆𝑑𝑟𝑦 and 𝜆𝑠𝑎𝑡 as 292 

adjustable parameters.  293 

In contrast, the CK2005 and Tian2016 models predict an increase in STC during the wetting 294 

process, but with a logarithmic curve shape, starting with a constant value of 0 m3m-3. This leads 295 

to an overestimation of STC for fine-grained soils when the soil moisture content is low (NSE ≤ 296 

0.88). In addition, for the selected coarse soil sample (Figure 2c), they consistently underestimate 297 

the measured STCs (bias ≤ −0.24 Wm-1°C-1) except for the completely dry condition. 298 

18 of 43



 299 

Figure 2  Simulated soil thermal conductivity (STC) as a function of water content for selected 300 

unfrozen (a–c) and frozen (d–f) soil samples using different STC models. Hollow squares represent 301 

measurements under unfrozen state, while black solids for frozen state. The colored solid curves 302 

represent the simulation results of the models. Dashed blue lines represent values beyond the 303 

meaningful domain of the unified model (from 𝜃𝑖𝑛𝑖 to 1.09𝜃𝑖𝑛𝑖 − 0.09𝜃𝑢𝑤𝑐,𝑚𝑎𝑥(−40°C) given ice 304 

dilation). The dotted vertical line indicates the critical volume fraction (𝜙𝑐) of the unified model. 305 

The values of the three parameters as well as initial water contents ( 𝜃𝑖𝑛𝑖 ), along with the 306 

performance metrics of the unified model are labeled. Note that GD2016 is only applicable to 307 

unfrozen soils. The measurements of (a) were from Lu et al. (2014), (b) and (c) from Tarnawski et 308 

al. (2015), (d) from Xu et al. (2020), (e) from Zhang et al. (2018), and (f) from Kersten (1949). 309 

 310 

Compared to the other two models, the unified model provides more reliable simulations of the 311 

changes in STC caused by freezing (Figure 2d–f). For the fine-grained silt clay loam sample 312 

19 of 43



(Figure 2d), both the Tian2016 and unified models perform well (bias ≤ 0.14 Wm-1°C-1, RMSE ≤ 313 

0.19 Wm-1°C-1), while CK2005 tends to overestimate it (bias = 0.32 Wm-1°C-1, RMSE = 0.38 Wm-314 

1°C-1). In the case of the silty loam sample (Figure 2e), both the Tian2016 and CK2005 models 315 

predict overestimated values (bias ≥ 0.80 Wm-1°C-1), while the unified model perfectly reproduces 316 

the changes in STC (bias = −0.05 Wm-1°C-1). Regarding the coarse-grained sand sample (Figure 317 

2f), Tian2016 overestimates the STC (bias = 0.28 Wm-1°C-1), and CK2005 underestimates the STC 318 

(bias = −0.45 Wm-1°C-1). In contrast, the unified model provides a moderate prediction that appears 319 

to be closer to the mean STC measurements in magnitude (bias = −0.01 Wm-1°C-1). CK2005 320 

exhibits poor performance for the frozen soil samples (NSE < 0) and tends to predict a constant 321 

value under varying negative temperatures. This may be attributed to the insensitivity of the 322 

Kersten number to changes in saturation during freezing.  323 

Figure 3 offers a different perspective on the changes in STC along with decreasing temperature, 324 

but based on the same simulated results as shown in Figure 2d–f. The unified model effectively 325 

captures the trend of a rapid increase at the early freezing stage, which is particularly evident in 326 

the silt loam sample (Figure 3b). Tian2016 and CK2005 show similar abilities in representing the 327 

rapid increase at the beginning of freezing but with substantial biases. For the coarse-grained sand 328 

sample, all three models fail to capture the gradually increasing pattern observed in the 329 

measurements (Figure 3c). Nevertheless, the unified model more accurately approximates the 330 

magnitude of measured STCs, indicating its better performance in this aspect. Meanwhile, the 331 

amplitudes of STC variations predicted by all three models appear smaller than those of the 332 

measured data, possibly due to challenges in estimating unfrozen water content in the frozen state. 333 
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 334 

Figure 3  Simulated STC as a function of freezing temperature. The data are the same as Figure 335 

2d–f. 336 

3.2 Unification of STC behaviors 337 

To further demonstrate the capability of the new proposed model for a unified representation of 338 

STC for both unfrozen and frozen states, additional simulations were conducted on a silt loam 339 

sample (Zhang et al., 2018). Figure 4 shows the simulated STC variations in both wetting and 340 

freezing processes. Associated fitted parameter values and performance metrics are provided in 341 

Table 2. The simulations reveal a smooth transition between unfrozen and frozen STC, even with 342 

small gaps present. For a given soil sample, the unified model effectively predicts STC at any 343 

liquid content, illustrated by the blue line in Figure 4, as the soil becomes wetter. At a certain 𝜃𝑖𝑛𝑖, 344 

once the soil begins to freeze, the STC rapidly increases along the upward lines in Figure 4. In the 345 

unified model, the sum of liquid and ice contents is considered as the volume fraction of HCC 346 

(Equation (4)), which increases during freezing due to ice dilation. Hence, the simulation results 347 

are meaningful within a specific domain spanning from 𝜃𝑖𝑛𝑖 to 1.09𝜃𝑖𝑛𝑖 − 0.09𝜃𝑢𝑤𝑐,𝑚𝑎𝑥(−40°C), 348 

as depicted by solid lines in Figures 2 and 4. As a result, the model unifies and describes both the 349 

wetting process in unfrozen soils and the freezing process in frozen soils, a feature not commonly 350 

observed in existing STC models. Typically, separate models in different mathematical forms are 351 
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selected to simulate STC for unfrozen and frozen soils, often leading to gaps that occur when 352 

transitioning from unfrozen to frozen states. The unified approach ensures a seamless 353 

representation of STC behavior across wetting and freezing processes. 354 

 355 

Figure 4  Variations in thermal conductivity during both wetting and freezing processes as a 356 

function of total water content for a silt loam sample. The “unified unfrozen” experiment resembles 357 

a wetting process, while the others represent freezing processes with varying 𝜃𝑖𝑛𝑖. The abscissa 358 

represents total water content (liquid water content in unfrozen state, and the sum of liquid and ice 359 

contents in frozen state). Hollow squares denote measurements under unfrozen state, while black 360 

solid squares represent measurements under frozen state. Dashed blue lines indicate values beyond 361 

the meaningful domain of the unified model. Dashed vertical lines indicate the fitting values of 𝜙𝑐 362 

for the five experiments. The measured data are sourced from Zhang et al. (2018). 363 

 364 

The impact of 𝜃𝑖𝑛𝑖  on model performance (Table 2) is evident, as manifested by the 365 

underestimation of STC during the early freezing stage (i.e., the abscissa close to 𝜃𝑖𝑛𝑖 in Figure 366 

4). This discrepancy may be attributed to the underestimated 𝜃𝑢𝑤𝑐,𝑚𝑎𝑥, where the impact is minor 367 
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when 𝜃𝑖𝑛𝑖  is small but becomes more pronounced with larger 𝜃𝑖𝑛𝑖  , resulting in a significant 368 

overestimation of 𝜃𝑖𝑐𝑒 (Equation (14)). To mitigate this bias in future applications, one potential 369 

solution is to enforce the STC in the frozen state to be no less than the corresponding unfrozen 370 

value. The scaling exponent, 𝑡, characterizes the behavior of the STC near 𝜙𝑐, transitioning from 371 

the LCC-dominated end (i.e., 𝜆𝑑𝑟𝑦) to the HCC-dominated end (i.e., 𝜆𝑠𝑎𝑡). In this specific soil 372 

sample, the value of 𝑡 is smaller in frozen soil compared to unfrozen soil, while the larger 𝜃𝑖𝑛𝑖 373 

yields a smaller 𝑡 to reflect the shaper increase in STC. 374 

Table 2  Fitted values of model parameters and performance metrics of the unified model. 375 

Experiment 𝝓𝒄 𝒕 α bias RMSE NSE 

 (m3m-3)   (Wm-1°C-1) (Wm-1°C-1)  

Unified unfrozen 0.15 0.42 0.83 0.00 0.01 0.98 

Unified frozen (𝜃𝑖𝑛𝑖 = 0.20) 0.20 0.23 1.01 0.00 0.05 0.94 

Unified frozen (𝜃𝑖𝑛𝑖 = 0.24) 0.25 0.23 1.01 −0.02 0.07 0.90 

Unified frozen (𝜃𝑖𝑛𝑖 = 0.27) 0.29 0.21 1.01 −0.03 0.10 0.87 

Unified frozen (𝜃𝑖𝑛𝑖 = 0.30) 0.32 0.19 1.01 −0.05 0.15 0.79 

3.3 Established pedotransfer functions (PTFs) 376 

PTFs find widespread use within LSMs to estimate the parameters of the STC model by leveraging 377 

more readily available soil properties, such as texture, porosity, and dry bulk density, as well as 378 

available state variables within LSMs such as soil temperature and moisture content. Figure 5 379 

illustrates the PTFs for the three parameters used in the unified model derived from the training 380 

dataset. 381 
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 382 

Figure 5  Pedotransfer functions (PTFs) developed for the parameters: critical volume fraction 383 

(𝜙𝑐 ), scaling exponent (𝑡), and compensating factor (𝛼), leveraging basic soil properties for 384 

unfrozen (43 samples) (a–c) and frozen soils (55 samples) (d–f). The red shaded areas in (a, b, d) 385 

depict the 95% confidence band. The box plots (c, e, f) present the distributions of individual 386 

parameters where no significant correlation was identified with the basic soil properties, leading 387 

to the use of the median as the PTF. The boxes represent the range from the first to third quantile. 388 

 389 

In unfrozen soils, the critical volume fraction (𝜙𝑐) exhibits a positive correlation with porosity (𝑛) 390 

(Figure 5a, Equation (26)). This diverges from the GD2016 model’s approach that relies on clay 391 

content (Equation (2)). Both approaches, however, agree that soils with coarser textures typically 392 

entail smaller 𝜙𝑐. The divergence in the PTF for 𝜙𝑐 in the unified model might stem from the use 393 

of different training datasets. With a larger number of measurements (43 samples in this study, 17 394 

in theirs), greater confidence can be placed in our results. For frozen soil, the physical meaning of 395 
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𝜙𝑐  differs from that in unfrozen soils due to the involvement of phase change in the freezing 396 

process. Nevertheless, we observed a strong correlation with 𝜃𝑖𝑛𝑖  with R2 = 0.99 (Figure 5d, 397 

Equation (26)).  398 

In contrast, predicting the scaling exponent 𝑡 presents challenges, as it is theoretically influenced 399 

by various factors such as soil texture and compaction. For unfrozen samples, this study employs 400 

sand content for estimation (Figure 5b and Equation (27)), differing from GD2016 which uses 401 

clay content (Equation (3)). However, for frozen samples, identifying significant functional 402 

relationships with basic soil properties proves elusive due to the limited availability of STC 403 

measurements. As an alternative, we provisionally adopt the median value (0.23) (Figure 5e, 404 

Equation (27)). 405 

For the compensating factor (𝛼), a constant median value of 1.028 is adopted for unfrozen soils 406 

(Figure 5c, Equation (28)), and 1.001 for frozen soils (Figure 5f, Equation (28)). However, 407 

assigning constant values to 𝛼 does not diminish the importance of including 𝛼 in the model. As 408 

exemplified in Section 3.1, it assumes a vital role in facilitating accurate estimation of individual 409 

STC values. In addition, its proximity to 1 adds support to the plausibility of using the geometric 410 

mean method for STC calculations in saturated soils. 411 
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3.4 Model performance using pedotransfer functions 415 

Applying the respective PTFs, we assessed the performance of the unified model in comparison 416 

with the CK2005 and Tian2016 models using the testing dataset. Based on both quantitative 417 

metrics and visual comparison based on the 1:1 diagonal line, it becomes evident that the unified 418 

model outperforms the other two models (Figure 6).  419 

For unfrozen soils, the testing dataset includes 40 samples with a total of 240 measurements. The 420 

predictions made by all three models largely fall within a 10% error margin. Both the unified 421 

model (bias = 0.01 Wm-1°C-1, RMSE = 0.12 Wm-1°C-1, NSE = 0.96) and the CK2005 model (bias 422 

= 0.03 Wm-1°C-1, RMSE = 0.15 Wm-1°C-1, NSE = 0.94) exhibit similar predictive skills, but show 423 

overestimations for soils with low thermal conductivities at low moisture content. On the other 424 

hand, the performance of Tian2016 deteriorates when dealing with measured thermal 425 

conductivities larger than 1.5 Wm-1°C-1, resulting in consistent underestimations for those high 426 

measured STCs (bias = 0.10 Wm-1°C-1, RMSE = 0.22 Wm-1°C-1, NSE = 0.86).  427 
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 428 

Figure 6  Performance comparisons of the unified (a, d), CK2005 (b, e), and Tian2016 (c, f) 429 

models in predicting STC using respective PTFs based on independent testing datasets. The testing 430 

dataset comprises 40 samples with 240 measurements for unfrozen soils (a–c), and 38 samples 431 

with 65 measurements for frozen soils (d–f). 432 

 433 

For frozen soils, the testing dataset is more limited, consisting of 38 samples with 65 434 

measurements. Both the unified model (bias = −0.02 Wm-1°C-1, RMSE = 0.25 Wm-1°C-1, NSE = 435 

0.90) and the Tian2016 model (bias = 0.01 Wm-1°C-1, RMSE = 0.28 Wm-1°C-1, NSE = 0.87) 436 

provide more accurate predictions compared to the CK2005 model (bias = −0.28 Wm-1°C-1, RMSE 437 

= 0.42 Wm-1°C-1, NSE = 0.71). Generally, the model performances in frozen soils are less 438 

satisfactory than in unfrozen soils, except for the Tian2016 model. However, it is important to note 439 

that this partly arises from the overlap between our testing dataset and the training dataset used to 440 
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develop the Tian2016 model, potentially inflating accuracy scores. Nevertheless, the unified model 441 

provides predictions that align more closely with the measurements, avoiding significant 442 

systematic underestimations observed in the CK2005 model (bias = −0.28 Wm-1°C-1). 443 

4 Discussion 444 

4.1 Unifying STC behaviors in frozen and unfrozen soils 445 

The central focus of this study is the construction of a unified STC model capable of handling both 446 

unfrozen and frozen conditions. We extended upon the GD2016 model, which is developed 447 

exclusively for unfrozen soils. In unfrozen soil, the crucial factor influencing heat conduction is 448 

the emergence of "liquid capillary bridges" between particles characterized by 𝜙𝑐, which could 449 

significantly enhance the connectivity of heat conduction paths, leading to an increase in STC. 450 

Conversely, the rapid increase in STC during freezing primarily results from the replacement of 451 

liquid water with ice. The latter occupies a larger pore space and has higher thermal conductivity 452 

(𝜆𝑖𝑐𝑒  = 2.22 Wm-1°C-1 versus 𝜆𝑙𝑖𝑞  = 0.56 Wm-1°C-1), thereby enhancing contacts among solid 453 

particles.  454 

Despite these distinct mechanisms, the GEM framework allows the unification of these 455 

phenomena, with the saturated soil as the HCC (contingent on the thaw/freeze state) weighted by 456 

the volumetric total water content. The linkage between the two states is established through the 457 

liquid content before the onset of freezing (𝜃𝑖𝑛𝑖), which determines the maximal extent of liquid-458 

to-ice conversion. The critical volume fraction (𝜙𝑐) is thus well established as a function of 𝜃𝑖𝑛𝑖 459 

(Equation (26)).  460 
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4.2 Integration within GEM framework 461 

McLachlan’s development of the GEM equation (1987, 1986, 1985), integrating Bruggeman's 462 

symmetric/asymmetric theory and percolation theory, focused on artificially synthesized 463 

composite materials to derive the ranges of 𝜙𝑐 and 𝑡. However, the challenges in applying the 464 

original GEM equation to model soil transport properties, like STC, lie in the mixture of three 465 

phases (i.e., solid, liquid and gaseous states) and intricate structures involving shape, arrangement, 466 

and interaction of each component.  467 

To address the gap between the GEM assumption of a bi-phase system and the complexity of 468 

multiple components in soil, we draw inspiration from the GD2016 model. Wetting and freezing 469 

processes are considered as water redistribution within pores, ignoring soil skeleton changes. The 470 

unified model focuses on pore fillers, designating air and water as the two bounds. Solid 471 

contribution is implicitly integrated into these bounds, designating dry soil as LCC and saturated 472 

soil as HCC. In this framework, the sum of fractions for LCC (𝑛 − 𝜃𝑙𝑖𝑞 − 𝜃𝑖𝑐𝑒) and HCC (𝜃𝑙𝑖𝑞 +473 

𝜃𝑖𝑐𝑒) equals porosity (𝑛), diverging from the original GEM equation where it equals 1. Alternative 474 

partitioning schemes, like air as LCC and saturated soil as HCC, were considered but proved 475 

limited in robustness.  476 

Given the disparity between soil and artificially synthesized materials, parameters 𝜙𝑐 and 𝑡 may 477 

not align with previous studies, termed nonuniversal behavior. However, the rapid increase in STC 478 

during wetting and freezing aligns with percolation theory. Parameter 𝑡 characterizes conductivity 479 

change around 𝜙𝑐, depending on the ratio of thermal conductivities of HCC and LCC (𝜆𝐻𝐶𝐶 𝜆𝐿𝐶𝐶⁄ ), 480 

structural and geometrical properties, and saturating fluids. Ghanbarian and Daigle et al. (2016) 481 

and our experiments (Section 3.2) both indicate that for materials with a small conductivity ratio 482 

(𝜆𝐻𝐶𝐶 𝜆𝐿𝐶𝐶⁄ < 106), 𝑡 decreases as the ratio decreases. Therefore, the applicable 𝑡 for modeling 483 
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STC (𝜆𝐻𝐶𝐶 𝜆𝐿𝐶𝐶⁄ < 102) takes a substantially small value (e.g., 0.225–0.369 for GD2016; 0.260–484 

0.439 for the unified model). In materials with large 𝜆𝐻𝐶𝐶 𝜆𝐿𝐶𝐶⁄ , 𝑡 decreases from 2 in an insulator-485 

conductor system (Stauffer and Aharony, 1992) to 0.76 in a conductor-superconductor system 486 

(Bergman and Stroud, 1992) due to microstructural differences: one phase versus two phases 487 

forming a continuous heat pathway. For moist soil and partially frozen soil, where more 488 

components are involved, a smaller value of 𝑡 is expected.  489 

Additionally, the contact angle between saturating fluid and solid matrix affects the continuous 490 

heat pathway, with a larger contact angle leading to a smaller 𝑡  (Ghanbarian et al., 2015; 491 

Ghanbarian and Daigle, 2016). Freezing processes result in a larger contact angle as substantiated 492 

experimentally (e.g., Wan et al., 2022). As a result, frozen soils show a further decrease in 𝑡 (a 493 

median of 0.23) compared to unfrozen soils (0.260–0.439), observed in specific soil samples 494 

(Section 3.3). Moreover, this study also notes that a larger 𝜃𝑖𝑛𝑖 corresponds to a smaller 𝑡, which 495 

may be related to the synthesis impact of contact angle and microstructure. 496 

4.3 Reevaluation of model performance  497 

He et al. (2021a) recently reviewed 39 STC models for frozen soils using a dataset comprising 331 498 

measurements. Their findings highlighted that a potential disparity between the claimed 499 

performance of these models and their real-world effectiveness as revealed through subsequent 500 

evaluation or testing. Among the tested models, the Becker et al. (1992) model emerged as the best 501 

for frozen soils, with a bias of −0.04 Wm-1°C-1, RMSE of 0.46 Wm-1°C-1 and NSE of 0.51. 502 

Meanwhile, Tian2016 excelled among theoretical models (bias = 0.19 Wm-1°C-1, RMSE = 0.51 503 

Wm-1°C-1, NSE = 0.38).  504 

In alignment with He et al. (2021a)’s methodology, we reevaluated the models involved in this 505 

study using all frozen soil datasets (74 samples with 255 measurements), without the separation of 506 
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training and testing datasets. Our dataset highly matched He et al. (2021a), with similar 507 

measurement sizes (255 in this study, 331 in theirs). Our evaluation indicated that the unified 508 

model’s performance (bias = 0.11 Wm-1°C-1, RMSE = 0.43 Wm-1°C-1, NSE = 0.41) slightly 509 

surpassed that of Tian2016 (bias = 0.23 Wm-1°C-1, RMSE = 0.44 Wm-1°C-1, NSE = 0.38), which 510 

was already a top-performing model according to He et al. (2021a). 511 

4.4 Challenges and limitations 512 

Despite the advantages of uniformity, high accuracy as well as robustness, the proposed unified 513 

model still faces limitations that could impact its quality. Similar to most STC models for frozen 514 

soils, the model’s accuracy partly relies on estimating unfrozen water content, often challenging 515 

to determine through cost-effective methods in the measurements (Tian et al., 2015; Zhou et al., 516 

2014). This study estimated unfrozen water content using the matric potential equation (Equation 517 

(9)–(14)), a scheme with fully known parameters and widely used in prior STC modeling studies 518 

(He et al., 2021b; Tian et al., 2016). However, the relation between STC and freezing temperature 519 

(Figure 3) and the non-trivial underestimation during the early freezing stage (Figure 4) indicate 520 

room for improvement in unfrozen water content estimation (Hu et al., 2020; Lu et al., 2019). 521 

Furthermore, this flaw inevitably propagates to the calibrated parameters as well as the derived 522 

PTFs. 523 

The calculation of solid thermal conductivity (𝜆𝑠𝑜𝑙𝑖𝑑) can affect the unified model, as is common 524 

in other STC models. Ideally, it should be computed using the geometric mean method with typical 525 

mineralogical compositions (Côté and Konrad, 2005b). Practical simplifications often consider 526 

only two components: quartz (𝜆𝑞𝑢𝑎𝑟𝑡𝑧) and other minerals (𝜆𝑜𝑡ℎ𝑒𝑟𝑠). Given quartz’s enrichment in 527 

coarse-grained particles and its often-missing content due to specialized equipment requirements 528 

(Calvet et al., 2016), half the sand content is used as an approximation. He et al. (2021a) evaluated 529 
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several methods for estimating quartz and endorsed this approach. In this study, a compensating 530 

factor α is therefore introduced for adjustment to account for potential biases.  531 

Some discrepancies in the predictions made by the unified model could be attributed to the 532 

deviation of a uniform value of 𝑡 (0.23) from optimal values as demonstrated in the case of a silty 533 

clay loam example provided by Xu et al. (2020), where an optimized 𝑡  was close to 0.45. 534 

Currently, no strongly explanatory variable was found for 𝑡, necessitating future efforts to establish 535 

a reliable PTF for 𝑡. It should also be noted that the GD2016 model treats LCC and HCC (𝜆𝑑𝑟𝑦 536 

and 𝜆𝑠𝑎𝑡) as adjustable parameters, offering flexibility but reducing applicability when integrated 537 

into LSMs. The adjustment of 𝜆𝑑𝑟𝑦 and 𝜆𝑠𝑎𝑡 may lead to unrealistic bounds and shift essential 538 

model parameters (𝜙𝑐 and 𝑡). Therefore, our unified model refrains from treating 𝜆𝑑𝑟𝑦 and 𝜆𝑠𝑎𝑡 as 539 

free parameters and we opt to directly estimate them from widely used empirical model (Equations 540 

(5)–(8)). 541 

While the unified model currently demonstrated superior performance compared to other models, 542 

there is still a need for caution and further investigation. The connection between the model 543 

parameters and the intrinsic properties of soils, such as the fractal dimension of pore spaces and 544 

the distribution of grain sizes, demands more in-depth exploration.  545 

5 Conclusions 546 

Based on the GD2016 model for unfrozen soils, this study has presented a novel unified model 547 

capable of capturing the intricate STC behaviors of both unfrozen and frozen soils. The model, 548 

characterized by three key parameters (critical volume fraction, 𝜙𝑐 ; scaling exponent, 𝑡 ; and 549 

compensating factor, 𝛼 ), treats dry soil as the low-conductivity component (weighted by air 550 

volume fraction) and saturated soil as the high-conductivity component (weighted by volumetric 551 
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liquid content in unfrozen states and by both liquid and ice fractions in frozen states). To facilitate 552 

integration into LSMs, pedotransfer functions for the model parameters were trained and evaluated 553 

using measurement data sourced from comprehensive literature. Two main conclusions were 554 

drawn:  555 

(1) The unified model demonstrates notable strength in accurately reproducing the rapid increase 556 

in STC at low moisture conditions in unfrozen soils and the intricate STC dynamics throughout 557 

the complete freezing process. The critical parameter 𝜙𝑐  signifies the formation of “liquid 558 

capillary bridges” between solid particles during wetting processes and closely connects to the 559 

initial water content during freezing processes.  560 

(2) The unified STC model, under rigorous comparison with established models CK2005 and 561 

Tian2016, consistently outperforms across various performance metrics. For unfrozen soils (40 562 

samples, 240 measurements), it exhibits a bias of 0.01 Wm-1°C-1, RMSE of 0.12 Wm-1°C-1, and 563 

NSE of 0.96, while maintaining robust performance for frozen soils (38 samples, 65 564 

measurements) with a bias of −0.02 Wm-1°C-1, RMSE of 0.25 Wm-1°C-1, and NSE of 0.90. These 565 

results affirm the superior predictive capability of the unified model over its counterparts, which 566 

is crucial for understanding and modeling ground temperature dynamics in cold regions. 567 
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